
An architecture for a space-based reconfigurable protocol chip

Clayton Okino*, Clement Lee*, Andrew Gray*, Payman Arabshahi*, Wai Fong+, Jason Soloff+

Jet Propulsion Laboratory*

California Institute of Technology
4800 Oak Grove Drive M/S 238-343

Pasadena, CA 91109
{Clayton.Okino, Clement.Lee, Andrew.Gray,

Payman.Arabshahi}@jpl.nasa.gov

Goddard Space Flight Center/NASA+

Code 567
Greenbelt, MD 20771

{Wai.Fong, Jason.Soloff}@gsfc.nasa.gov

Abstract - In this work, we present a framework for a space-
based reconfigurable protocol chip. We identify key input
stimuli that would promote reconfiguration. Utilizing the
identified stimuli, we then present a basic architecture that
enables configuration. Significance is placed on the protocol
aspect and in particular, detection and reconfiguration of a link
layer protocol. We present a sensing mechanism that detects
when link layer reconfiguration is required and finally present
results on the likelihood of false reconfiguration for our link
layer protocol sensing technique. In addition to the sensing
aspect, fault tolerance in addressed.

I. INTRODUCTION

An architecture for implementing a software
reconfigurable network processor for satellite
communication applications is presented. The reconfigurable
protocol chip enables rapid autonomous reconfiguration of
space communications network functions. This
reconfiguration provides long-life space communications
infrastructure, enables dynamic operation within space
networks with heterogeneous nodes, and compatibility
between heterogeneous space networks (i.e. distributed
spacecraft missions using different protocols) as depicted in
Figure 1. This work builds upon numerous advances in
commercial industry as well as NASA and military software
radio developments to develop reconfigurable space network
processing and processors. The development of such radios
and the network protocol chip presented here require
defining the correct combination of processing methods and
developing appropriate dynamic reconfiguration techniques
as a function of system goals and operating parameters.
Dynamic reconfiguration techniques developed herein
include autonomous network/protocol identification and
autonomous network node reconfiguration. Both the Earth
Science Enterprise Strategic Plan and Research Strategy for
2000-2010 identify satellite constellations and specifically
distributed spacecraft and particularly formation flying
technologies as an important technology thrust and
investment areas, applicable to a range of missions. Such
missions will have wireless network protocols derived or
extended from commercial efforts in this area. Specifically,
commercial protocols might be used or might be modified

for use in many future distributed spacecraft missions. It is a
tremendous challenge to find one “universal” protocol to
meet the requirements of all of these future missions; in fact
the challenge is so great that it is the belief of these
authors/investigators that there is not such a protocol in
existence (particularly one that is commercially available)
and that even if such a protocol existed it’s complexity
would have serious drawbacks from
realization/implementation and adoption perspectives. This
being the case, missions in the next 5-10 years are extremely
likely to be operating with multiple protocols and substantial
protocol variations depending on the requirements of the
distributed spacecraft mission. The reconfigurable protocol
chip seeks to reduce the cost and risk of future mission by
enabling internetworking compatibility and on-mission
reconfiguration; therefore networks with more general
resource sharing and backward /forward compatibility can be
maintained.

Figure 1 Heterogeneous networks in space

II. FRAMEWORK AND ARCHITECTURE

 In this section, we describe the basic reconfiguration
architecture for space-based applications. We identify the

Network Protocol Suite A

Network Protocol Suite B

Network Protocol Suite A

Network Protocol Suite B

key input stimuli, the mechanism that perform detection of
the stimulus and some processing either coupled or
decoupled that executes intelligent decision on the input.
 As depicted in Figure 2, the reconfiguration
architecture presented contains three key components
required to identify and perform reconfiguration in space: (1)
External stimulus detected will either result in a requirement
to perform a chip reconfiguration or a desire to reconfigure a
chip; (2) Sensors are required to detect and possible perform
specific in-situ processing on the detected stimulus; (3)
Intelligent processor performs the decision either
independently or in a coupled manner if multiple stimulus
are correlated such that desired outcomes of the process have
differing reconfiguration mappings.

Figure 2 Space-based Reconfigurable Chip Architecture

A. External Stimuli
 In space-based operations, various interactions are
desirable or necessary. We identify a set of currently
realizable or desirable sensing interactions such as radiation,
physical layer communication, link layer variability (inter-
heterogeneity and intra-heterogeneity), updatability (to
improve overall performance or correct errors in original
design).
1) Radiation
 A key source of failure of a module in space
resulting in a system fault in space environment [2]: Galactic
Cosmic Rays (GSM), Solar Radiation (e.g. Solar
Wind/Protons, Coronal Mass Ejections), Planetary Magnetic
Fields (e.g. Van Allen Belts, Jovian belts). Some key types
of radiation effects [2][3] are Total Ionization Dose (TID):
cumulative ionization causing increase in leakage current and
threshold shifts; Single Event Effects (SEE): single particles,
Linear Energy Transfer, Single Event Latch up (SEL), Single
Event Upset (SEU), Single Event Multiple Upset (SEMU),
Single Event Gate Rupture, Single Event Micro-dose
2) Physical Layer Communication Impairments
 In space, key impairments and the effect it has on
performance at the physical layer (assume RF links) are due

to variations in the channel. The effect of these impairments
can be mitigated utilizing various waveforms, error
correction techniques, (as well as link layer reliability
techniques and other higher layer interactions). Ideally one
could map EIRP (perform link budgets, map to a potential set
of waveforms or allowable waveforms, then perform
appropriate detection in the Waveform Detection Module).
Beyond a brief description of the Waveform Module
description is techniques is beyond the scope of this work
and is out of scope of this paper although is popular among
the Software Radio community.
 For our approach and for the remainder of this paper
we assume a single waveform specifically, a BPSK
waveform.
3) Link Layer Communication Interaction
 In terms of OSI layer 2, we recognize that space-
based variability in terms of reconfiguration amount to the
possibility of a number of link layer protocols and the ability
to interact among various heterogeneous networks. If we
assume a synchronization capability of some form either
octet synchronous possibly due to framing performed at the
forward error correction framing level, or some other
mechanism such as described in the Goddard Space Flight
Center (GSFC) Parallel Integrated Frame Synchronizer
(PIFS) Chip, we can then perform additional framing
detection as can be found in many standards. As a baseline
capability, we assume a form of HDLC (RFC1662)[4] &
802.3 link layer framing.
4) Reconfiguration Variability
 Version upgrades, added features, reliability of valid
transfer are all desirable and in some cases required
mechanism in a reconfigurable platform. Analogous to this
philosophy is the ability to perform upgrades and add
software while a spacecraft is in transit to a remote location.
Some preliminary work has been performed for a spacecraft
avionics architecture to provide reconfiguration in-situ [5]. In
particular, [5] describes mission operation procedures and
uplink/downlink process to reconfigure the spacecraft in-
orbit where commands are defined to execute the in-fight
hardware reconfiguration where spacecraft safety is of
significant concern.

B. Sensors/Detectors
 We now describe the sensors capabilities and partial
processing required for our proposed reconfiguration
platform.
1) Fault Detection Sensor

The fault detection sensor must detect and
distinguish between transient and permanent faults. The trade
offs for different methods of fault detection include circuit
down time, circuit complexity, and detection update rate.
The chosen, low complexity fault tolerance scheme allows
for a basic level of reliability. Other complex fault tolerance
schemes can be implemented on top. In order to constrain the

Circuit
Failure
Module

Dynamic Physical
Layer

Impairments
Module

Dynamic Link
 Layer

Compatibility
Module

Dynamic
Updatability

Module

Fault
Detection

Sensor

Waveform
Detection
Module

Protocol
Correlation

Module

Real-time FPGA File
Transfer

Detection Module

Reconfigurable
Processor
(Waveform,
Link Layer,

Version,
Features

Selection)

EXTERNAL STIMULUS SENSORS/DETECTORS
INTELLIGENT/DECISION
PROCESSOR

complexity of our paper, we omit the complexity of other
fault tolerance schemes1.

Cyclic Redundancy Check (CRC) codes provide a
simple and effective tagged data scheme to monitor data
corruption in many applications. CRC codes were selected as
the fault detection sensor scheme due to their ease of
implementation. However, system downtime and detection
update rates may be an issue depending on the application,
i.e. network latency requirements. In our scheme, CRC codes
will be inserted into the data processing periodically. A
single CRC failure will trigger a transient fault detect.
Multiple consecutive CRC failures will trigger a permanent
fault detect.
2) Waveform Detection Module
 Many variants on dynamic waveform detection and
reconfiguration can be employed. In particular the ability to
detect a particular waveform in-situ and then reconfigure in
space is a novel concept even though the basic concept can
employ well-known techniques as are used in standard dialup
modems. For our case, we shall assume that the waveform is
BPSK and leave the remainder of waveform detection for
future work out of the scope of this paper
3) Protocol Correlation Module
 The protocol correlation module is a layer 1 sensor
that is expected to detect between a set of possible protocols.
The concept of heterogeneous networks in space will be
driven by a number of variables outside of the scope of this
work. However, we can consider target protocols that have
high probability of use in future space-based networks.
Among these are HDLC variants (e.g. RFC1662), 802.3, and
GFP. For this paper, we consider two of the protocols, 802.3
and RFC1662 and focus on some of the detection variants for
RFC1662.
4) Real-time FPGA File transfer Detection Module
 Beyond the standard mechanism employed in COTS
Network Interface Cards (NICs), the concept of updating the
file transfer process at the link layer is a novel concept that
has not been fully leveraged. In particular, for FPGA based
transmissions as is well-defined for Xilinx operation, one can
employ a real-time reliable mechanism that will allow for
fast Xilinx reconfiguration file transfers. With the advent of
the higher density higher speed RAMs, we can employ faster
Layer 1 processing for FPGA as well as other file transfer
mechanism as depicted in Figure 3. This concept was
presented in [6] for a general reliable file transfer and is
basically leveraging the added capabilities that are being
designed into NICs.

1 In general, we anticipate utilizing schemes such as Triple Modular
Redundancy (TMR), a form of circuit replication and voting for
space-based fault tolerance.

Figure 3 Link Layer Reconfigurable file transfer
platform

As part of this architecture described above in Figure 3, we
can employ robust protocols such as hybrid ARQ [7]
techniques in addition to file checking at the link layer rather
than traditional end-to-end verification.

III. FAULT TOLERANCE & LINK LAYER

PROTOCOLS AND SENSING

 In this section, we focus on two of the four sensing
areas for reconfiguration. Specifically, we examine
processing algorithms and techniques for fault tolerant
mapping and link layer recognition and processing schemes.

A. Fault Tolerant Mapping

The reconfigurable processor uses a simple two
tiered fault diagnosis and recovery architecture, as shown in
Figure 4.

Figure 4 Two tiered fault detection and recovery

 Transient fault detects will be accumulated to detect
permanent faults. Other than notifying the application,
nothing else will be done to correct transient faults. We can
rely on higher layers to deal with the effects of transient
faults. Permanent faults will be dealt with by reprogramming
the FPGA with an alternate pre-compiled spatial variant of
the same application.

The motivation for this fault tolerance mapping is to
increase the dependability of the link layer operation within
the FPGA. The overall architecture is based on a priori
knowledge of the failure within the FPGA.

Transient
Fault

Detect

Permanent
Fault

Detect

Select
New Bit File

From
memory

Application
FPGA

Load bit stream

Notify
Application

New FPGA
Reconfiguration

File

Link Layer
Protocol

PHY Layer

Very
Large
high

speed
RAM

Received
FPGA

Reconfiguration
File

Link Layer
Protocol

PHY Layer

Very
Large
high

speed
RAM

If the spatial representation of an FPGA is defined
in Euclidean coordinates (x,y), then let p(x,y) be the
probability of a point in an FPGA failing. Given this
distribution, we could simply constrain our FPGA design to
minimize use of the points with the highest values of p(x,y).
The probability of failure for the ith configuration file
occupying some subset, ri, of the entire FPGA is

()
()
∑

∈
=

iryx
i yxpP

,

,

To simplify the problem, our pre-compiled designs will be
constrained to equal spatial distribution orientations. The
probability of failure for any configuration will be the same.
Figure 5 shows an example circuit with 75% utilization,
constraining the circuit to 3 of the 4 quadrants. The
probability of failure is 1/4.

Figure 5 Redundant spatial variation of FPGA utilization

 The spatial variants for a protocol detection circuit
for 802.3 and HDLC framing structures is shown in Figure 6.
Due to the relatively small size of the design, the Xilinx
Spartan 2 XC2S30 FPGA was selected, where utilization is ~
50% [1].

Figure 6 FPGA Floor Plans for 4 phases of constraints

with 50% utilization

B. Link Layer Recognition and Processing Schemes
 We assume that the physical layer is octet
synchronous for both the 802.3 frame structure and the
RFC1662 HDLC frame structure. Specifically, the 802.3
preamble is omitted and we focus on the 802.3 start frame
delimiter and the HDLC opening flag. As in any link layer
protocol some of the primary functional attributes are frame

synchronization, addressing, multi-protocol selection, data
transparency, and reliability. To simplify the analysis, we
focus on the RFC1662. Furthermore, we assume that the
address field is set at 8 bits, the control field is fixed, the
Frame Check Sequence is fixed at 16-bits and we are not
utilizing ARQ.

For frame synchronization, it is straightforward to
perform a cross correlation between the two start field bit
sequences. Recognize that 0x7E and 0xAB differ in exactly
5 bit locations as depicted in Figure 5.

Consider a generic threshold circuit that is needed to
validate the start flag for a single link layer protocol. In the
case of RFC1662 (or 802.3), tolerating a number of bit errors
(bit flips) in the start flag would be desired. Recognize that a
sensing decision circuit in the form of a threshold decision
circuit used to determine if the protocol is 802.3 versus
HDLC will make an incorrect decision if at least 3 of the
differing bits are in error (i.e. it will mistaken one protocol
for the other).
 Suppose p is the probability of a bit error. Then
among the 5 differing bits, if any 3 or more bits are in error,
then the sensing decision circuit will result in a protocol
decision error in the form of a binomial distribution as
described in the equation below.

() ()

()

543

53545

23145

5

3

5

14510

101055

)1(
3

5
15

1
5

detection protocol FalsePr

ppp

ppppp

ppppp

pp
ii

ii

−+=

−+−+=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∑

=

−

 As depicted in Figure 6, we examine a plot for
likelihood of false protocol sensing as a function of Signal to
Noise (SNR) for uncoded Binary Phase Shift Keying (BPSK)
modulation conditioned on reconfiguration between the two
defined protocols using the simple threshold decision circuit.
 In Figure 7, we observe that in general, the
likelihood of a false sensing and error protocol configuration
is low and decreases fast with respect to the bit error rate
(BER) for BPSK. However, if the circuit is consistently
monitoring on a per packet basis, and a burst of bit errors
occur, then invalid reconfiguration could occur on a per
packet basis. To reduce the likelihood of “protocol
configuration flapping”, we introduce a Markovian state
based concept where we condition re-configuration on prior
states.
 Ideally, we would like the conditional state
probability distribution of the sensing error. As an
approximation, it would be advantageous to use the
conditional average bit error rates.

() ∑
=

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

5

3

5 ,)1(
5

T tat timeerror Pr
i

i
T

i
T pp

i

where)1,...,2,1,0/(−=== TtTtppT , the average

probability given the probability of the previous bit time
slots. In general, one could assume that since all bits are

independent, this is fixed to p, the probability of a bit error.
However, if in a space-based (wireless) scenario the channel
correlates bit errors (analogous to burst errors), then the
independence assumption no longer holds and a conditional
distribution is desired for state dependent autonomous
protocol reconfiguration. We introduce an example of such
an algorithm in [1].

Figure 7 Protocol Sensing Error Probability

 We now extend the concept of error detection with
higher resolution. Specifically, we consider identifying the
data transparency variations within RFC1662. In particular,
we detect the difference between the bit-stuff operation
(RFC1662 Section 4) and the byte stuffing operation
(RFC1662 Section 5). First, we briefly describe these two
stuffing mechanisms and then describe a procedure for
resolving the stuffing approach being used.
 From RFC1662, for the byte-stuffing procedure, the
bit sequence is examined on an octet by octet basis. Since
the flag sequence is 0x7E and we assume that the likelihood
is uniform among all possible octet sequences, we have the
well-known result for this sequence occurring with
probability 1/256. Specifically, in RFC1662 the 0x7E
sequence maps to 0x7D followed by 0x5E. Another possible
character re-mapping is the control escape sequence 0x7D re-
mapped to 0x7D followed by 0x5D.
 From RFC1662, for the bit-stuffing procedure, the
bit sequence is examined on a bit by bit basis. Since the flag
sequence is 0x7E (containing five one’s in a row), then a “0”
bit is inserted after all five contiguous “1” bits.
We have the well-known results of the likelihood of these
sequences occur with probability 1/32.
 In addition to utilizing the traditional CRC codes to
validate that frames are correct, we can also validate using
the special sequences described for the byte stuffing
procedure. We assume that the only re-mapping for the byte
stuffing procedure are the flag sequence and the control
escape sequence. If we assume that the control escape
sequence is almost never used, then we are evaluating if the
bits sequence 0x7D5E exist versus the bit sequences that

equate to inserting an additional “0” using bit stuffing
equating to the 15-bit sequence “011111101011110”. The
likelihood that this is originally a bit stuffing process would
be the likelihood that this exact 15-bit sequence occurred
resulting is a probability of 1/2^15 = 3e-5. By executing
this checking process and then weighting this scenario as a
bit stuffed process with the 1/2^15 likelihood followed by the
proper CRC based on detecting the end-of-frame correctly
then we can select the type of stuffing. Further examination
into this the benefits of this procedure as oppose to
simultaneously implementation of both stuffing procedures is
under investigation. Note that weighting likelihood
detections schemes of this form allow for a level of
scalability but also present some finite likelihood of false
detection.

IV. COMMENTS

 We presented a promising architecture—that
includes stimuli sensing capability and an intelligent
processor—for a space-based reconfigurable protocol chip.
We examined a simple strategy for detecting and combating
faulty circuitry. Finally, we presented some standard link
layer framing protocols and identified a detection mechanism
for the data transparency variants in RFC1662. In addition to
refinement of the link layer protocol set, there is significant
interest in refinement of the reliable link layer file transfer
architecture and corresponding protocol.

REFERENCES

[1] C. Okino, C. Lee, A. Gray, P. Arabshahi, “An
Autonomous Evolvable Architecture in a Reconfigurable
Protocol Chip for Satellite Networks”, 2003 MAPLD
International conference, September 9-11, 2003,
Washington, D.C.
 [2]John Scarpullla and Allyson Yarbrough, “What Could go
Wrong? The Effects of Ionizing Radiation on space
Electronics”,
http://www.aero.org/publications/crosslink/summer2003/03.
html
[3] Raphael Some, “Radiation Models and Hardware
Design”, presentation in 2002.
[4] RFC1662 – PPP in HDLC-like Framing, July 1994.
[5] Saio Chau, Adans Ko, Kar-Ming Cheung, “Mission
operation for reconfigurable spacecraft”, SpaceOps 2004
conference.
[6] L. Clare, J. Gao, E. Jennings, C. Okino, “Reliable Link
Layer File Transfer” DRAFT technical report May 2004.
[7] Shu Lin, Philip S. Yu, "A Hybrid ARQ Scheme with
Parity Retransmission for Error Control of Satellite
Channels", IEEE Transactions on Communications, no. 7,
July 1982 pp. 1701-1719.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

