Kinematic and Kinetic Analysis of a Transtibial Biarticular Prosthesis

Andrea Willson
University of Washington
VA Center of Excellence for Limb Loss Prevention & Prosthetic Engineering
BP Prototype

- Thigh Cuff
- Socket
- Pylon Strain Gauge
- Variflex foot
- Ratcheted Clutch
- String Potentiometer
- Spring
- Load Cell
Specific Aims

1. Validate OpenSim methodology

2. Analyze how the BP affects one amputee’s gait
Methods

Walking trials:

1. Prescribed Prosthesis
2. BP with increasing spring stiffness
 - 1.85 N/mm
 - 3.7 N/mm
 - 10 N/mm
 - Stiff
3. Unpowered BP

Vicon
Marker trajectories
Ground reaction forces
Matlab
Processing and formatting

OpenSim
Scale
Inverse Kinematics
Inverse Dynamics
Matlab τ_{BP} Calculation

F – measured from load cell

r – Calculated in OpenSim using preset points of application

$$\tau_{BP} = r \times F$$
Dual Inverse Dynamics

\[\tau_{GRF} + \tau_{other} + \tau_{unknown} = I\alpha \]
Methods Comparison

Comparison of BP contribution calculation methods

Knee Moment Contribution (Nm)

Percent Gait Cycle (%)
BP Ankle Contribution

Ankle Moment N·m/kg

Plantar

Dorsi

Average: 33%

Unpowered BP
1.9 N/mm BP
3.7 N/mm BP
10.5 N/mm BP
Stiff BP
Knee Kinematics

Graph showing the knee angle in degrees over time for different conditions:
- Unpowered BP
- 1.9 N/mm BP
- 3.7 N/mm BP
- 10.5 N/mm BP
- Stiff BP

Flex point indicated on the graph.
Discussion

- Dual ID method is an accurate and valid method to compute the BP contribution to joint torques

- BP contribution to ankle plantar flexion torque increased as stiffness increased

- More analysis and additional subjects needed to delineate the BP effects at the knee
Acknowledgments

Contributors:
Richburg, Chris 1
Czerniecki, Joseph 1,3
Steele, Kat 2
Aubin, Patrick 1,2

1. Department of Veterans Affairs
 RR&D Center of Excellence, Seattle, WA USA
2. University of Washington
 Department of Mechanical Engineering
3. University of Washington
 Department of Rehabilitation Medicine
Contralateral Knee Moment
Ipsilateral Knee Moment

The graph shows the knee moment in Newton-meters per kilogram (N-m/kg) as a function of flexion angle. The graph includes curves for different conditions, with labels for 'Ext' and 'Flex' indicating extension and flexion, respectively. The x-axis represents the flexion angle in degrees, ranging from 0 to 100. The y-axis represents the knee moment in N-m/kg, ranging from -0.4 to 0.6.