Development of a Smart Walking Cane with Biofeedback

ISABELLE D. PUMFORD1,2, MARCUS J. BAILEY1,4 AND PATRICK M. AUBIN1,3,
1RR&D CENTER OF EXCELLENCE, VA PUGET SOUND, SEATTLE, WA, 2COLLEGE OF ENGINEERING AT UNIVERSITY OF ARKANSAS, FAYETTEVILLE, AR 3DEPARTMENT OF MECHANICAL ENGINEERING AND SCHOOL OF MEDICINE4, UNIVERSITY OF WASHINGTON, SEATTLE, WA
EMAIL: IDPUMFOR@UARK.EDU
Introduction

- 27 million adults suffer from Osteoarthritis in the United States
- Reducing knee adduction moment, KAM, has been shown to decrease pain and improve function

- Wanted to create a walking aid that encourages increased cane loading and KAM reduction using a vibrotactile biofeedback loop
Device Requirements

- Provide cane load biofeedback
- Mobile battery operated
- Able to store data
- Person up to 113 kg (250 lbs)
- Able to measure force from 0N to 222N
- Able to record date and time
- Similar weight to conventional cane.
- Able to mechanically withstand up to 222N
Initial Design

- Force Link outputs charged based on piezoelectric effect. Displacement results in a charge being created.

- When compressed an Inline Amplifier creates a charge from 0-5V; can detect up to 265N.

Handle holding electronics bent during testing
Current Design

- 6mm motor
- On and off switch
- PBC protects components and allows for sturdy exterior
- Smart Cane provides biofeedback in the form of a vibration when 20% of user’s body weight is loaded
Electronics

- Promicro controls computerized system
- Open logger allows data to be stored on SD card
- Real Time Clock records actual time and date for record keeping
- Motor controller controls vibrating motor
Electronic Communication

- **Motor Controller**
- **ProMicro**
- **RTC**
- **SD Logger**
- **Inline Amp**

Pulse Width Modulation (PWM)

Inter-Integrated Circuit (I²C)

Serial Link

10bit Resolution Analog Pin
Force Measurement Validation

Force Measured by Cane and Force Plate

RMS Error ±2.5 N
Arduino Software

- Records force
- Records peaks
- Turns motor on and off
- Loop repeats every 20 milliseconds, 50 hertz
Conclusion

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Smart Cane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide cane load biofeedback</td>
<td>Vibrotactile feedback loop</td>
</tr>
<tr>
<td>Mobile battery operated</td>
<td>Untethered and uses Li-ion batteries</td>
</tr>
<tr>
<td>Able to store data</td>
<td>Data logger uses SD card</td>
</tr>
<tr>
<td>Person up to 113 kg (250 lbs)</td>
<td>Yes</td>
</tr>
<tr>
<td>Able to measure force from 0N to 222N</td>
<td>Up to 265N</td>
</tr>
<tr>
<td>Able to record date and time</td>
<td>Uses RTC for real time and date</td>
</tr>
<tr>
<td>Similar weight to conventional cane.</td>
<td>About 2 kg of weight added</td>
</tr>
<tr>
<td>Able to mechanically withstand up to 222N</td>
<td>New PBC model is able</td>
</tr>
</tbody>
</table>
Acknowledgements and Questions

- Study funded by the Department of Veterans Affairs grant A9243C; RR&D Center of Excellence for Limb Loss Prevention and Prosthetic Engineering., VA Puget Sound, Seattle WA.