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ABSTRACT: Craniosynostosis is the premature fusion of the calvarial sutures that is
associated with a number of physical and intellectual disabilities spanning from pediatric
to adult years. Over the past two decades, techniques in molecular genetics and more
recently, advances in high-throughput DNA sequencing have been used to examine the
underlying pathogenesis of this disease. To date, mutations in 57 genes have been
identified as causing craniosynostosis and the number of newly discovered genes is
growing rapidly as a result of the advances in genomic technologies. While
contributions from both genetic and environmental factors in this disease are
increasingly apparent, there remains a gap in knowledge that bridges the clinical
characteristics and genetic markers of craniosynostosis with their signaling pathways
and mechanotransduction processes. By linking genotype to phenotype, outlining the
role of cell mechanics may further uncover the specific mechanotransduction pathways
underlying craniosynostosis. Here, we present a brief overview of the recent findings in
craniofacial genetics and cell mechanics, discussing how this information together with
animal models is advancing our understanding of craniofacial development.
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■ INTRODUCTION

At birth, the human calvaria consists of five major bones: the
paired frontal and parietal bones and the occipital bone. These
bones develop through intramembranous ossification, where
the radial growth of each bone from a central locus of
osteogenesis, approximates with an unossified mesenchyme to
form a suture. The unossified mesenchyme is presumed to
serve two major functions: it allows for both temporary
deformation of the skull during birth and expansion of the
cranial vault during brain growth. In normal development, the
metopic suture, located between the paired frontal bones fuses
at three to nine months of age,1 whereas the other sutures fuse
in the third decade of life.2 Prior to these events, the balance of
sutural elasticity, calvarial osteogenesis, and brain growth
maintains healthy calvarial development.
Excessive bone growth at the osteogenic fronts or untimely

reduction in brain growth can result in premature suture fusion.
The four common types of synostosis are metopic, coronal,
sagittal and lambdoid synostosis (Figure 1). Craniosynostosis
divides into syndromic and nonsyndromic forms with
syndromic forms defined as those with recognizable patterns
of craniofacial and noncraniofacial malformations. A number of
mutations are associated with syndromic craniosynostosis.3−6

Collectively, nonsyndromic single-suture craniosynostosis
(SSC) represents a common group of human malformations

with a birth prevalence of 1 in 1700−2500 live births;7,8

whereas syndromic forms have a prevalence of approximately 1
in 25 000.9−11 Because of both its prevalence and the required
medical and surgical management, craniosynostosis is one of
the most clinically significant craniofacial disorders.
Premature suture fusion results in abnormalities in skull

shape, usually becoming apparent between the last trimester of
pregnancy and the first few months of life. Early suture fusion
reduces further growth of the adjoining bones, in a direction
orthogonal to the suture. Consequently, the normal expansion
of the brain promotes compensatory overgrowth at other
sutures, leading to progressive distortion in the skull shape.
These changes in head shape can be associated with increased
intracranial pressure that when untreated, may result in
permanent brain injury.12,13 In addition to these risks,
craniosynostosis is also associated with alterations in
craniofacial growth including midfacial hypoplasia, abnormal-
ities in dental alignment, orbital deformation, and other
characteristics such as hearing loss or intellectual disability.12,13
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Generally, craniosynostosis is treated with cranioplasty in order
to restore the normal shape of the head and relieve increased
intracranial pressure. Because of its complexity, such procedures
hold risk of significant morbidity.14,15 To date, craniosynostosis
remains a significant medical and dental health issue where
there are no pharmacological treatments, nor earlier inter-
ventions to prevent suture fusion.
More recently, it has become evident that abnormal suture

fusion may be caused by an interaction of a number of factors.
One of the least understood factors that may be involved in this
process is the role of mechanical forces in expansion of the
calvaria, brain growth and its effect in maintaining suture
patency, which is the focus of this review. The second factor is
the intrinsic property of the suture, which has been reviewed
elsewhere.16 Finally, external forces acting on the calvaria,
especially during fetal life, might also contribute to the onset of
craniosynostosis, especially in nonsyndromic cases of SSC.
Recent epidemiological evidence consistent with contribu-

tions from fetal head constraint showed positive associations of
craniosynostosis with twin pregnancies, multiple pregnancies,
and high birth weight.17 Previously, it was shown that
compressive strain can increase osteogenesis at the suture.18

Furthermore, in vivo mouse models of head constraint have
been shown to induce craniosynostosis.19 Recent work has
demonstrated that the activity of an anabolic signaling factor as
insulin growth factor 1 (IGF-1) affects human derived SSC
osteoblast contractility and migration, providing valuable
insight for phenotype−genotype correlation in SSC osteo-
blasts.20 It is evident therefore, that there exists a complex
interplay between suture patency, genetics, signaling pathways,
and mechanotransduction processes which may be related to
the pathogenesis of craniosynostosis. The purpose of this
review is to provide an overview of the underlying
developmental biomechanics of suture formation, followed by
a discussion of the recent molecular genetics of craniosynos-
tosis, supporting a role of cell mechanics in this disease; and
finally, a consideration of future ideas and directions.

■ DEVELOPMENTAL BIOMECHANICS OF SUTURE
FORMATION

Calvarial Bone Formation and Suture Fusion. The
human calvaria is formed through intramembranous ossification
which occurs within a condensed region of mesenchymal stem
cells. Its formation is in contrast to the formation of
endochondral bone such as long bones and the skull base,
which advance initially through a stage of chondrogenesis
before proceeding to osteogenesis.21 The development of the
human calvaria commences during the eighth week of
gestation.9,22−24 At the initial site of ossification (the
ossification locus), mesenchymal osteoprogenitor cells differ-
entiate into osteoblasts, secrete extracellular matrix (ECM)
proteins, and initiate mineralization.9 Osteogenesis in the
human calvaria requires the differentiation of mature
osteoblasts from undifferentiated proliferating mesenchymal
osteoprogenitor cells. Growth of the calvaria is radially outward
from the locus of osteogenesis, eventually approximating the
bones to form the suture (Figure 2).23 The leading edges of
these osteogenic fronts contain proliferative osteoprogenitor
cells.25,26

Suture formation occurs through the progression of the two
confronting osteogenic fronts. Therefore, a suture is a
composite structure comprised of a region of unossified tissue
between two calvaria bordered by osteogenic fronts and the
overlying dura mater (the tough membrane that adheres to the
inner surface of the cranial vault and separates it from the
brain). Mature cranial sutures can withstand deformation in
both tension and compression.27 Their primary function is to
enable the growth of the skull in coordination with the rapid
expansion of the calvaria during brain growth.28 Furthermore,
the intracranial pressure of the brain growth produces tensile
strains, which may either act directly on the suture or indirectly
through mechanotransduction via the dura mater.18 In addition,
sutures allow deformation of the skull during birth, absorb
cyclic mechanical loading during mastication and locomotion,
and act as shock absorbers against external forces.29

Although cranial sutures start off as simple lines of separation
between developing bones, they become increasingly inter-
digitated with age.30 Mathematically, these meandering patterns
have been previously described in terms of fractal geometry,
with the fractal dimension increasing with age.30 Furthermore,
there have been analytical attempts to account for this behavior
by employing reaction-diffusion models which incorporate
diffusible factors, positive and negative feedback loops,
mechanical strain, and time-dependent processes.27,30 More-

Figure 1. Types of craniosynostosis. Center: schematic representation
of the top view of a normal cranium with all identified sutures
(metopic, coronal, sagittal and lambdoid). To either side of the normal
presentation of the skull, CT scans showing skull shapes with coronal
(left) and sagittal (right) synostosis. Finally, metopic synostosis is
shown at the top, whereas lambdoid synostosis is shown at the bottom.

Figure 2. Schematic and histological presentation of the sagittal suture.
(A) Schematic and (B) histological appearance of the sagittal suture
showing the paired parietal bones (P) and the relative positions of the
osteogenic fronts (OF), intrasutural mesenchyme (ISM), the
pericranium, and the dura mater. The leading edges of these
osteogenic fronts contain proliferative osteoprogenitor cells and the
sagittal suture is a composite structure that consists of the osteogenic
fronts and the intrasutural mesenchyme.
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over, a recent study has suggested that the fractal nature of
these meandering patterns may be due to the stochastic nature
of craniosynostosis.31 Therefore, these theoretical findings
demonstrate that suture growth is likely to incorporate the
interplay of cellular signaling pathways that are responsive to
mechanical strain.
The major calvarial sutures fuse at different times during

normal development. In humans, the metopic suture (between
the frontal bones) fuses at three to nine months of age1 while
the others (coronal, sagittal, and lambdoid) fuse in the third
decade of life.2 Although some investigation into the molecular
processes of suture fusion has been conducted in humans,
much of our understanding is drawn from animal models.
Immunohistochemical studies of the coronal sutures in rats
(between the frontal and parietal bones) reveal high
concentrations of alkaline phosphatase at the osteogenic fronts
on fetal day 19 (F19) prior to apposition of their osteogenic
fronts.32 At the time of apposition (F21), alkaline phosphatase
activity decreases, demonstrating reduced bone formation,
perhaps representing a mechanism serving to prevent
synostosis. In contrast, in vitro studies of osteoblasts derived
from prematurely fused human sutures demonstrate an increase
in alkaline phosphatase production and osteocalcin expression,
suggesting that osteogenic differentiation occurs in surplus of
that present in normal sutures.33,34 These studies suggest that
regulation of bone differentiation and matrix production plays
an important role in suture patency.
Apoptosis (programmed cell death) has also been widely

explored during suture fusion in rodents. Through histologic
evaluation of fetal and newborn mice, apoptotic bodies have
been observed at the osteogenic front during bone
apposition.35−38 These findings suggest that the process of
apoptosis may attenuate osteogenesis at the suture boundary,
thereby preventing abnormal fusion. It appears therefore, that a
harmonious balance of brain growth,2 inhibited mineralization
of the intrasutural mesenchyme,39 growth of the calvarial bones
at the osteogenic front,25,26 and programmed cell death36

maintains suture patency during skull growth. When the
persistence of the unossified intrasutural mesenchyme of the
calvaria is prematurely abolished or there exists an overgrowth
of the osteogenic fronts, the neighboring calvaria begin to fuse,
which then results into craniosynostosis. Craniosynostosis is
therefore an etiologically heterogeneous condition with known
genetic and presumed epigenetic causes.
Strain and Suture Patency. For over two decades, it has

been suggested that in utero head constraint is associated with
an increased incidence of premature calvarial suture
fusion.2,40−43 Previous studies have shown that early descent
into the pelvis, primiparity and other forms of fetal constraint
have been implicated as causing both metopic and sagittal
synostosis.17,40,44,45 The proposed pathogenesis in these cases is
that compression of the calvaria leads to reduced strain, at the
osteogenic fronts and ultimately early suture fusion. These
clinical examples are consistent with animal models of fetal
constraint wherein cervical ligatures were used to prolong
gestation resulting in craniosynostosis.46 In addition to in utero
constraint, reduced brain growth resulting in severe micro-
cephaly is well-known to be associated with premature fusion of
the calvaria.2,43 Like in utero constraint, reduced brain growth
has the effect of reducing quasi-static tensile strain across the
calvarial sutures (Figure 3). Similarly, treatment of hydro-
cephalus with ventriculoperitoneal shunting can lead to
premature fusion of otherwise normal sutures.47 Shunting

decompresses the enlarged brain resulting in a reduction of the
tensile strain experienced by the suture microenvironment.
Although the exact pathogenesis of synostosis in these examples
remains unclear, they serve to illustrate a possible relationship
between quasi-static tensile strain and homeostasis of the suture
microenvironment. These observations suggest that inhibition
of normal suture strain associated with brain growth can result
in premature suture fusion. These clinical and experimental
models are in apparent disagreement with well-established
animal data, which suggest that even in the absence of normal
suture strain, the dura mater has an intrinsic ability to maintain
suture patency.48−50 Moreover, differential expression of
transforming growth factors beta 1, beta 2, and beta 3 (TGF-
β1,-β2, and -β3) and the type I TGF-β3 receptor in the suture
microenvironment has been associated in the regulation of
suture fusion through its control of proliferation and
apoptosis.51−55 This apparent inconsistency emphasizes the
importance of improving our understanding of the role of strain
in suture patency and calvarial development.
Much of our knowledge of suture biology comes from studies

of facial sutures, rather than cranial sutures. For example, both
oscillatory and continuous strains on the facial sutures are
known to stimulate suture growth.56 Tensile and compressive
oscillatory strain of 1500 microstrain (με) have been
demonstrated to increase suture growth, where enhanced
expression of ECM and mass of both osteoblast and fibroblast
cells were observed.56,57 Fibroblast and osteoblast proliferation
in response to mechanical strain is well recognized; however,
there has been little work done in designing experimental
models that mimic normal suture biology. As little as 500 με of
oscillatory strain has been found to induce premaxillomaxillary
suture osteogenesis.58 Therefore, the oscillatory strain experi-
enced in facial sutures induces suture growth with both

Figure 3. Strains and suture patency. (A) Cross-sectional depiction of
the sagittal suture depicting the paired parietal bones (P). The dura
mater is the tough membrane that adheres to the inner surface of the
cranial vault, which separates it from the brain. The pericranium is
located apically. The growth of the cranial vault is regulated by a
harmonious balance of proliferating and differentiating cells occurring
within the suture (blue). This growth takes place in synchrony with an
expanding brain (black arrows). Therefore, we can describe this
behavior by plotting the effect of normal expanding brain and its effect
on the suture as a stress−strain curve. (B) Conversely, in
craniosynostosis, this balance is disturbed by external forces as in
utero constraints during pregnancy (green arrows), poor brain
expansion (vertical black arrows) and/or abnormal signal transduction
within the suture (red shade). Generally, reduced brain growth has the
effect of reducing quasi-static tensile strain across the calvarial suture as
shown in the stress−strain graph.
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compressive and tensile strain having an anabolic effect on the
suture microenvironment.56

Mechanical Loading on Sutures. The earliest studies of
cranial suture biology sought to relate the morphology of a
suture to its mechanical microenvironment.59−61 More
specifically, when sutures were transplanted into regions
which did not experience mechanical loads, the new micro-
environment was found to alter suture morphology.62

Furthermore, previous studies investigating the relationship
between mechanical loadings as a result of mastication observed
an upregulation of sutural bone growth.63 This study found that
increased masticatory muscle mass and bite force would
increase sagittal suture complexity in myostatin-knockout
mice. Moreover, we have identified loss of nasofrontal suture
complexity in the midface deficient FGFR2 mutant model of
Apert syndrome, where loss of normal incisor occlusion occurs
(unpublished data: Figure 4).64 This suggests that the tissue

surrounding the suture adapted to a particular mechanical
loading regime achieved by differential bone growth at the
suture.63 In another study, applying tensile testing on sagittal
sutures from postnatal rats aged 2 to 60 days, increased sutural
thickness and stiffness per length was also observed.65

Interestingly, these aforementioned properties were found to
be age dependent, suggesting that during development, the rat
sagittal suture changes significantly after exposure to in vivo
quasi-static tensile strain due to intracranial pressure.65

The craniofacial skeleton comprises intramembranous bones
that exhibit growth following calvarial expansion66 and
mastication.67 Change in masticatory forces has been shown

to induce craniosynostosis, wherein osteopetrotic mice
displayed premature fusion of the sagittal suture,68 whereas
rats on much softer diets exhibited internasal synostosis.69

Expansion of the brain changes cranial growth, where absence
of brain tensile forces observed in fetuses with microcephaly
developed craniosynostosis.70−72 Conversely, the presence of
external pathological forces can also have a major impact on
skull development. For example, primiparity,17 multiple
births,73 low pelvic station,41 and late-term pregnancies74

have all been associated with the development of SSC.
Modeling Sutures and Cranial Growth. Novel develop-

ments in computer modeling are frequently employed when
conducting detailed investigations into the effect of cranial vault
loading. Analysis incorporating techniques in finite element
analysis (FEA) and multibody dynamics analysis (MDA) have
in the past, been used to examine such phenomena as
musculoskeletal force generation, translations of bone plates
and subsequent stress/strain distributions within the cranial
vault. These techniques have previously been used to
mechanically model biological systems, where understanding
the force distribution of mastication in humans and other
primates is under scrutiny.75−77 It is essential, however, that
when developing a suitable computational analogue, the specific
material properties unique to the structure must be
incorporated in the model to accurately predict the mechanical
properties of the environment. This is more challenging in
consideration of materials such as bone that are by their nature
considered an anisotropic material where their properties vary
not only between individuals but also throughout each
specimen. Previously, one group performed a sensitivity study
into the effects of using isotropic and anisotropic material
properties in a Macaca fascicularis cranium.75 The group
observed that while more detailed models were more accurate
when compared to their experimental strain counterparts,
investigations defined by solely isotropic material produced
comparable results. Congruently, one other study also validated
these conclusions,77 where they showed positive correlation to
experimental data using isotropic material properties. These
findings therefore indicate that investigations into complex
three-dimensional structures applying isotropic materials yield
highly successful results.78−80

FEA is generally used when addressing questions concerning
the impact of patent sutures on skull stresses/strains. To
produce accurate measurements of strains experimentally, strain
gauges are fixed to the surfaces of bones.81−83 Generally,
localized strains at these fixed locations are easily obtainable.
However, to infer global strain measure over the entire cranial
vault or the patent suture is a more challenging task. Therefore,
FEA can be used to predict the stress/strain distributions for
the entire structure.84−86 A previous study assessing local and
global strains carried out on a lizard skull revealed two major
findings.87 The first was strain modification was found to be
greater in global patent sutures when compared to fused
sutures. The second being that strain found to decrease in some
areas of the skull was seen to increase in others.87 In contrast,
another study, however, suggested that patent sutures had little
effect on skull strains in primates;88 but appeared more
important in animals with more patent sutures or a greater
suture to bone volume as reptiles.87,89 These studies when
combined with experimental data provide important informa-
tion describing suture form and function.
To gain a wider insight in the impact of patent and fused

sutures on load transfer within the cranial vault, more

Figure 4. MicroCT images were obtained of the nasofrontal suture of
both control and Apert mice carrying the FGFR2S252W/+ mutation. (A)
Control mouse is showing the interdigitated suture (black arrow). (B)
Apert mouse does not have normal occlusion or maxillary and
mandibular incisors; therefore, the nasofrontal suture is not strained
and loses normal interdigitation (black arrow).
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comprehensive analyses are needed. One way of doing this is to
combine both MDA and FEA. These two techniques were used
in the reptile Sphenodon to predict separate biting loading
regimen and subsequently analyzed the structural performance
of the skull under such regimens.90 Subjecting the skull to many
different loading regimens is important because cranial vault
deformation varies greatly depending on the loading position
and magnitude.90 These findings demonstrated for the first
time that patent sutures may in fact help in reducing the
number of cranial areas with low-level strain throughout the
reptile skull, leading to a more consistent method in predicting
strain levels during mastication90 Such findings are of clinical
relevance because of their implications in respect to the
remodeling and growth of bone in both juvenile and adult
skulls, ensuring the normal trajectory of bone development.

■ MOLECULAR GENETICS OF CRANIOSYNOSTOSIS
Our understanding of the genetic components of human
craniosynostosis are modest at best. Presently, there are 57
genes known to be causally related to craniosynostosis, which
have been reviewed in great detail elsewhere.16 Herein, this
review will briefly describe the genetic pathophysiology linked
to some of the more common forms of craniosynostosis. In
humans, syndromic synostosis (hereditary) is caused by
mutations in the genes for fibroblast growth factor receptors
(FGFR) and twist-related protein 1 (TWIST1). The following
syndromes - Apert, Crouzon, Pfeiffer, and Jackson Weiss - are
all due to specific gain of function mutations of FGFR2 in either
the second interloop domain (Apert) or third immunoglobulin-
like domain (Crouzon, Pfeiffer, Jackson Weiss).91−96 This is
similar to the gain of function mutations in the second
interloop domains of FGFR1 and FGFR3, which result in
Pfeiffer and “Muenke Type” craniosynostosis, respec-
tively.97−100 Other less common mutations of FGFR2 and
FGFR3 have been associated with syndromic craniosynosto-
sis.101,102 A single point mutation in MSX2 is believed to
increase transcriptional activity, resulting in “Boston-type”
craniosynostosis.103 To date, the only other transcription factor
found to be associated with craniosynostosis is the basic helix−
loop−helix (bHLH) protein TWIST1. Several loss of function
mutations in DNA binding and loop domains of TWIST1 have
been found to be responsible for Saethre-Chotzen syn-
drome.104−109

Saethre-Chotzen Syndrome. Saethre-Chotzen syndrome
(SCS, acrocephalo-syndactyly type III) is one of the more
common forms of syndromic craniosynostosis.109,110 Patients
with SCS typically present premature fusion of one or more
sutures of the calvaria, brachycephaly, facial asymmetry, a low
frontal hairline, ptosis, maxillary hypoplasia, and small ears with
a prominent superior crus.109 Although any sutures in the
calvaria can undergo premature fusion in SCS, coronal sutures
is the most common. Associated limb anomalies may include
brachydactyly or cutaneous syndactyly of the second and third
digits of the upper extremities. As SCS is an autosomal
dominant trait, it is accepted that the SCS phenotype is caused
by a functional haploinsufficiency of TWIST1.111 This is further
supported by animal models such as the heterozygous TWIST1
mutant mouse (TWIST1tm1Bhr) that reveals premature coronal
suture fusion mimicking that of the human SCS pheno-
type.105,112,113

TWIST1± Mutant and Haploinsufficiency. High-
throughput sequence analysis has identified many intragenic
TWIST1 mutations in patients with SCS.109,111 Nonsense

mutations inhibiting translation of the DNA and the HLH
domains have been identified from the 5′ end of the coding
sequence to the end of the HLH motif. Though missense
mutations cluster within the functional domains, specific
mutational loci have yet to be identified. In recent studies,
the functional effects of TWIST1 mutations have also been
examined. In these studies, nonsense mutations were found to
increase the synthesis of truncated proteins that rapidly
degraded, leading to functional haploinsufficiency.114,115

Missense mutations involving helical domains were found in
contrast, to result in a loss of heterodimer formation, which
subsequently altered nuclear translocation.114,115 Moreover, in-
frame insertion or missense mutations within the loop domain
were found to alter dimer formation while these mutations in
the basic domain altered DNA binding. Taken together, these
findings suggest that both protein degradation and altered
subcellular localization, may in part, account for the loss of
functional TWIST1 protein (functional haploinsufficiency) in
SCS patients.

TWIST1± Mutant and Cell Specifications. TWIST1 and
other bHLH transcription factors play an important role in
specifying and maintaining cell identity.116,117 TWIST1 was
initially characterized in Drosophila as being necessary during
gastrulation in the establishment of the mesodermal germ layer
and embryos with TWIST1 mutations failing to develop
mesoderm.118 In Drosophila, TWIST1 expression persists at
high levels in the mesoderm until its differentiation into the
somatopleura and splanchnopleura when its expression
diminishes.119 During mouse development, TWIST1 is ex-
pressed in the neural crest cells that populate the cephalic
region and branchial arches, which differentiate into connective
tissue, muscle, cartilage, and bone.120 Migratory populations of
cephalic neural crest cells are the origin of the membranous
bones of the skull and its intervening sutures, overlying dermis,
and underlying dura mater,121−124 which infers a crucial role in
early calvarial development. TWIST1 has also been shown
previously to inhibit differentiation of multiple cell lineages,
including muscle125−128 and bone.129,130 Taken together, these
findings propose that TWIST1 may function to maintain cells
in a less differentiated state during craniofacial development. In
support of this hypothesis, recent studies suggests that TWIST1
is indeed necessary for normal osteocalcin expression in human
osteoblasts,131 perhaps acting through a RUNX2-dependent
pathway.132 Although the precise function of osteocalcin still
remains unclear, its secretion by osteoblasts during differ-
entiation suggests a likely role in matrix mineralization.
Furthermore, an additional investigation into the role of
TWIST1 in osteoblast biology observed its binding to the
promoter of periostin (OSF2) by which upregulating its
expression.133 As a secreted ligand of α5β3 and α5β5 integrins,
periostin is therefore believed to play a role in cellular adhesion.
Together, these recent discoveries suggest that TWIST1 might
serve to regulate both matrix mineralization and cellular
adhesion. While information from disease-specific mutations
and their genetic/biochemical characteristics provide a clear
benefit to understanding craniosynostosis, it is when we view
genetics in relation to cell mechanics (i.e., signaling pathways
and mechanotransduction processes) that we gain a more
detailed understanding of the external and internal factors
influencing this disease.
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■ ROLE OF CELL MECHANICS

Mechanical Properties of Sutures. Characterizing the
mechanical properties (elastic modulus) of bone is an
important step in the understanding of craniofacial develop-
ment. By invoking tools in tensile testing or three-point
bending, the elastic modulus of calvarial bones and sutures in
normal skulls has been able to be quantified.134−137 More
recently, however, nanoindentation has been used as an
alternative method in examining tissue samples less than 0.1
mm in size, making it an ideal method for measuring the
properties of cranial bone, and even sutures, in rodents and
other small animals.138 When using a Crouzon mouse model
(FGFR2C342Y/+), a difference in the elastic modulus of the
frontal bones between wild type and FGFR2C342Y/+ mutant mice
was observed at the early stages of postnatal development.138 In
contrast, however, this study also demonstrated that the elastic
modulus of the parietal bones and their sutures were
comparatively more similar between these two groups.138 It is
therefore likely that such variations in the mechanical
properties of the calvaria may result from different patterns of
strain as a consequence of suture fusion.
Traction Forces of Sutures. In vivo, both mechanical

forces and properties of the ECM influence cellular physiology.
The translation of physical information into a cellular response
is now believed to be a critical component in many biological
pathways.139−141 Extracellular nanoscale forces have been
shown to influence numerous signaling pathways both in vivo
and in vitro.142−146 Such nanoscale forces can arise through
stretch or compression of the microenvironment, fluid shear
stress or localized forces occurring at focal adhesion sites, which
have been shown to result in cytoskeletal remodeling, changes
in cellular orientation and alignment, alterations in gene
regulation, and the determination of cell fate.142−146 Under-
standing the role of mechanotransduction is therefore
quintessential in expanding our understanding of how physical
forces are generated and transmitted through living cells.
Mechanical forces imposed on osteoblasts are a well-known

inductor of osteogenic markers. In particular, cyclic strain has
been shown to induce the production of these osteogenic
markers, including osteocalcin, osteopontin, alkaline phospha-
tase, and type I collagen.147 Osteoblasts differentiated from
mesenchymal stems cells, have been shown to increase in
response to mechanical factors like cell shape;148,149 substrate
stiffness,150 and applied strain.151 Moreover, when a strain
regimen was applied in vivo to the tibia of transgenic mice
selectively overexpressing IGF-1, a 5-fold increase in bone
formation as compared to wild-type mice was observed.152 This
suggests therefore that traction forces are an essential factor for
the mechanotransduction of cell shape, substrate stiffness, and
applied strain shape.139,153−155

The causative factors leading to craniosynostosis is of great
interest due to relatively high frequency of SSC when compared
to other birth defects, and its far-reaching clinical burden.
Previously, the family of TGF-β1, -β2, and -β3 were found to
play an important role in suture morphogenesis by regulating
and maintaining suture patency and calvarial bone growth.55

Furthermore, cyclical loading on murine calvaria was also found
to induce suture fusion and show upregulation of alkaline
phosphatase, a nonspecific bone marker of osteoblastic
activity.156 Recently, IGF-1 expression has been correlated to
SSC osteoblast contractility and migration, where increased
expression levels led to larger traction forces and reduced

migrations speeds in diseased osteoblasts.20 Furthermore, in
our previous study we identified a number of genes (FGFR3,
TGFBR1, TGFB3, WNT3, WNT5B, WNT16, CTBP2, DTX4,
DVL2, and ITGB1) whose expression was correlated with
contractility and/or migration in SSC osteoblasts, all of which
have been previously implicated in bone development.157−160

These findings suggest that there exists interplay between the
IGF-1 pathway and the regulation of the aforementioned genes,
which may act in an integrative manner leading to the
development of SSC.

Migration of Osteoblasts Derived from Sutures.
Previous studies have implicated IGF-1 signaling in mediating
focal adhesion formation and cell migration.161,162 Indeed,
recent transcriptomic studies reveal an upregulation in IGF-1
expression in calvarial osteoblasts derived from patients with
SSC, which was accompanied by a further positive correlation
to an increase of ECM-mediated focal adhesion proteins.163

This anabolic signaling factor appears to promote the
association of the IGF-1 receptor to focal adhesion proteins,
leading to increased cellular migration and invasion.161 In our
previous study, we found that not only did IGF-1 expression
correlate to cell contractility, but also to cell migration.20

Furthermore, a number of factors that have been found to
influence skeletal development have been correlated to
migration in osteoblasts derived from SSC patients.20 Previous
work has identified RUNX2 as an osteogenic marker that
induces osteoblast and chondrocyte differentiation by enhanc-
ing their migration through coupling with PI3K-Akt signal-
ing.164 Furthermore, Akt signaling is activated by IGF-1
through the PI3K pathway and therefore, IGF-1 plays an
important role in RUNX2-dependent osteoblastic differ-
entiation in MC3T3-E1 cells.164

Healthy patterned growth of the calvarium is dependent on a
tightly regulated program of cell proliferation, differentiation,
and migration. Investigating the contributions of these
processes is crucial in understanding how the calvarial pattern
is established in cranial growth and how developmental
pathologies like craniosynostosis arise. Osteoblast migration
has previously been demonstrated to be an important factor in
the patterned growth of calvarial bones, where its impairment
was found to lead to craniosynostosis in TWIST1 and EphA4
mutant mice.165 These findings were consistent with previous
work,166 supporting the notion that cell migration is a
significant morphogenetic force in the patterned growth of
the skull vault. Therefore, it appears that the migration of
osteoprogenitor cells from the osteogenic front may contribute
to the apical expansion of calvarial bones.
More precise techniques in identifying the progenitor cell

populations which comprise the suture, as well as under-
standing the mechanotransduction processes that guide their
migration and differentiation, will help further advance our
understanding of the mechanisms that underlie the patterned
growth of the skull as well as the pathophysiology of
craniosynostosis.

■ FUTURE IDEAS AND DIRECTIONS
One of the most exciting areas of craniofacial research is
investigating the integrative role of mechanical forces, signal
transduction, and gene regulation in the onset of craniosynos-
tosis. By employing mutant mouse models, we can identify
candidate genes affected as result of changes in mechanical
strain mimicking that of an expanding brain. Furthermore,
developing an in vitro model that allows us to study the
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transduction of mechanical signal into biochemical changes will
advance our understanding of the role of strain induced by
brain growth and other mechanical forces (mastication or
pulsatile blood flow) in normal calvarial development and
suture development. Given the importance of environmental
factors in craniosynostosis, including frequent asymmetry in
suture fusion, the contribution of genetic and epigenetic
influences are all crucial areas of interest that should be
explored further in hope to yield diagnostic treatments on a
case-by-case basis.
Although the precise mechanisms preceding craniosynostosis

are complicated and unclear at present, current advances in the
field suggest it is a bridge between suture biology and cell
mechanics which may affect the normal onset of suture fusion.
Further investigations which raise disease-specific cell mechan-
ics to their genetic counterparts are therefore necessary in order
to provide deeper insights into the mechanisms regulating the
development of craniosynostosis and other developmental
disorders.
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