Mechanical tugging force regulates the size of cell–cell junctions

Zhijun Liu1,*, John L. Tan2,*, Daniel M. Cohen4,*, Michael T. Yang*, Nathan J. Sniadecki4, Sami Alom Ruiz2, Celeste M. Nelson6, and Christopher S. Chen6,7,2

1Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104; and 2Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205

Edited by Shu Chien, University of California, San Diego, La Jolla, CA, and approved March 31, 2010 (received for review December 17, 2009)

Abstract

Actomyosin contractility affects cellular organization within tissues in part through the generation of mechanical forces at sites of cell–matrix and cell–cell contact. While increased mechanical loading at cell–matrix adhesions results in focal adhesion growth, whether forces drive changes in the size of cell–cell adhesions remains an open question. To investigate the responsiveness of adherens junctions (AJ) to force, we adapted a system of microfabricated force sensors to quantitatively report cell–cell tugging force and AJ size. We observed that AJ size was modulated by endothelial cell–cell tugging forces: AJs and tugging force grew or decayed with myosin activation or inhibition, respectively. Myosin-dependent regulation of AJs operated in concert with a Rac1, and this coordinated regulation was illustrated by showing that the effects of vascular permeability agents (51P thrombin) on junctional stability were reversed by changing the extent to which these agents coupled to the Rac and myosin-dependent pathways. Furthermore, direct application of mechanical tugging force, rather than myosin activity per se, was sufficient to trigger AJ growth. These findings demonstrate that the dynamic coordination of mechanical forces and cell–cell adhesive interactions likely is critical to the maintenance of multicellular integrity and highlight the need for new approaches to study tugging forces.

Mechanical tugging force regulates the size of cell–cell junctions

Actomyosin contractility affects cellular organization within tissues in part through the generation of mechanical forces at sites of cell–matrix and cell–cell contact. While increased mechanical loading at cell–matrix adhesions results in focal adhesion growth, whether forces drive changes in the size of cell–cell adhesions remains an open question. To investigate the responsiveness of adherens junctions (AJ) to force, we adapted a system of microfabricated force sensors to quantitatively report cell–cell tugging force and AJ size. We observed that AJ size was modulated by endothelial cell–cell tugging forces: AJs and tugging force grew or decayed with myosin activation or inhibition, respectively. Myosin-dependent regulation of AJs operated in concert with a Rac1, and this coordinated regulation was illustrated by showing that the effects of vascular permeability agents (51P thrombin) on junctional stability were reversed by changing the extent to which these agents coupled to the Rac and myosin-dependent pathways. Furthermore, direct application of mechanical tugging force, rather than myosin activity per se, was sufficient to trigger AJ growth. These findings demonstrate that the dynamic coordination of mechanical forces and cell–cell adhesive interactions likely is critical to the maintenance of multicellular integrity and highlight the need for new approaches to study tugging forces.

Cells generate contractile forces against their substratum and on surrounding cells primarily through myosin-generated tension in the actin cytoskeleton (1, 2). Studies in model organisms have revealed that this actomyosin activity is critical for tissue morphogenesis and dynamic regulation of cell–cell contacts. During gastrulation, apical constriction and an inward displacement of cell–cell junctions is driven by myosin II activity, allowing cells of the ventral furrow to invaginate (3, 4). Additionally, myosin II is essential for stereotypical cell shape changes and redistribution of cell–cell contacts that accompany tissue extension/expansion by cell intercalation in both Drosophila (5, 6) and Xenopus model (7, 8). Maintenance of cell–cell junctions in embryogenesis also appears to depend on myosin as loss of myosin heavy chain IIA disrupts E-cadherin and beta-catenin recruitment to cell–cell junctions and impairs cell–cell adhesion in embryoid bodies (9). Together, these studies demonstrate a requirement for myosin II in the organization of cell–cell junctions and imply that myosin-dependent forces may play a role in regulating cell–cell adhesion.

Among the different types of cell–cell junctions, the adherens junctions (AJ), in particular, appear sensitive to changes in myosin-dependent cytoskeletal tension. Inhibition of Rho kinase, MLCK, myosin ATPase activity or expression interferes with the growth and maintenance of adherens junctions in several systems (10–15). E- and N-cadherin cluster into focal adhesion-like structures when cells are plated on cadherin-coated substrates, and this clustering requires actomyosin contractility (14, 16, 17). Yet, unlike the mechanosensitivity of focal adhesions (18), force-dependent assembly of cadherin cell–cell junctions is not well established. Nevertheless, focal adhesions and AJs depend on the actin cytoskeleton for anchoring to the matrix or neighboring cells, and to withstand substantial forces (19).

To test the functional importance of forces at AJs, various systems have been developed to load cell–cell adhesions using atomic force microscopy (AFM), pipettes, or magnetically trapped beads (20–27). Pulling beads bound to cadherins with ∼1–150 pN forces are sufficient to elicit cellular signaling and actin assembly (20, 24, 27). Force-induced breakage of E-cadherin bonds, however, requires much stronger forces (∼200 nN) (23). While these studies describe a wide range of forces that cells can experience at cell–cell adhesions, these studies fail to capture the role of endogenous, cell-generated forces experienced at the AJ.

Here we describe a method using microfabricated force sensors that reports quantitatively on both the force applied to the cell–cell contact and AJ size. We find that endothelial cells generate substantial forces (up to ∼120 nN) that pull normal to the face of the cell–cell contact, designated as the intercellular tugging force. Furthermore, we demonstrate a robust correlation between AJ size and tugging force and reveal that both junctional parameters are directly responsive to myosin activity. This actomyosin contractility cooperates with a Rac-mediated pathway to determine the ultimate size of AJs. Furthermore, acute stimulation with RhoA or the application of exogenously pulling forces initiates a rapid AJ growth. These findings demonstrate that AJs undergo mechanically induced growth in response to loading and suggest that cell-generated forces can influence the architecture of tissues by regulating the strength of cell–cell adhesions.

Results

To measure tugging force, we retooled a previously described approach that uses an array of elastomeric microneedles to measure traction forces (28) (Fig. 1A–C and Eq. 1 in Fig. 1B). Cells exist in a quasi-static equilibrium where net force sums to zero (28, 29) (n.b., an imbalance of 1 nN would accelerate a 10 ng cell at 100 m/s2). For a cell in contact with a neighbor, the net force encompasses both traction forces and the intercellular tugging force experienced at the cell–cell contact (Fig. 1 D–F). Because the net force remains zero, the intercellular tugging force, Fc, is equal in magnitude and opposite in direction to the measured net traction force reported by the microneedle array (Fig 1F and Eq. 2 in Fig. 1F). This approach relies on the formation of a single contacting interface between two cells; calculating forces across multiple cell–cell contacts is mathematically insoluble. Whereas
random seeding yields few cells forming a single cell–cell contact, efficient pair formation was obtained by bowtie micropatterns (28) (Fig. 1 G and H).

To determine whether cells exert a measurable intercellular F_c, we assayed forces in endothelial cells seeded as singlets or in contacting pairs on the microneedle substrates (Fig. 1 I and J). In contacting cells, but not singlets, a substantial F_c (−40 nN), oriented roughly normal to the face of the AJ, was observed and was sustained over several hours (Fig. 1 J and K). No difference in average traction force per microneedle was observed between singlet and contacting cells (Fig. 1L). To confirm that the observed F_c reflects contractile forces transmitted to the AJ, we tested whether decoupling VE-cadherin from the actin cytoskeleton perturbed F_c. Expression of a mutant VE-cadherin deficient in β-catenin binding (deletion of residues 703–784) (30) decreased F_c to nearly half the level measured in GFP expressing control cells (Fig. 1 M–O), whereas traction forces remained similar (Fig. 1P). Thus, traction forces are applied to the AJ, and the transmission of such forces requires that VE-cadherin be anchored to the catenin complex.

AJ size (area of β-catenin staining) was heterogeneous in the bowtie patterns (Fig. 1 Q and R). Interestingly, the size of AJs and the magnitude of F_c were linearly correlated, resulting in an apparent constant stress of ∼1 nN/μm² (Fig. 1S). Traction force per microneedle, a measure of global cellular contractility, was uncorrelated with AJ size, indicating that changes in AJ size are specific to changes in local tugging force (c.f. Fig. 1S vs. T).

Myosin II-Dependent Tugging Forces Regulate AJ Assembly. These data suggested the possibility that cell–cell junction assembly, much like focal adhesion assembly, is a force-dependent process. To test this hypothesis, we antagonized cytoskeletal tension by treatment with Y-27632 (a Rho kinase inhibitor) or blebbistatin (myosin II ATPase inhibitor). Both inhibitors substantially decreased average traction force and F_c and caused a reduction in AJ size, preserving the linear relationship between F_c and junctions (Fig. 2 A–D). Likewise, siRNA-mediated knockdown of either myosin II A or II B decreased traction force, F_c, and junction size (Fig. 2 A–C and E).

These data are consistent with a reported requirement for myosin in maintaining adherens junctions (9, 10, 12–15). However, whether increasing myosin-mediated tension promotes AJ assembly is largely untested. We therefore assayed the effects of the tension-inducing drugs nocodazole and calycin-A in our system. Both agents significantly increased traction force, F_c, and AJ assembly (Fig. 2 B, C, and F), supporting a role for tension-induced AJ assembly. To achieve direct molecular targeting of myosin, we infected cells with lentivirally encoded phosphomimetic mutants (T18D, S19D) of myosin regulatory light chain (MLC). Phosphomimetic MLC, but not wild-type MLC, dramatically enhanced average traction force and F_c and induced more expanse AJs (Fig. 2 B, C, and G).

Remarkably, compiling all of our studies with tension manipulations revealed a general relationship between AJ size and F_c that spanned a wide range of AJ areas (∼7–87 μm²) and F_c (∼7–120 nN) (Fig. 2H). Using moving average and bootstrap methods to calculate the mean and 95% percent confidence interval, one can appreciate a linear relationship between AJs and F_c in the smaller force/AJ regime, whereas the response of AJ begins to saturate at forces higher than ∼70 nN, suggesting an upper limit for mechanosensitive growth of AJs.

To examine whether this force–AJ relationship can be generalized, we characterized the response of AJs in conventional monolayers to tension manipulations. Consistent with the bowtie system, treatment of monolayers with tension antagonists reduced AJ levels as compared to unstimulated cells (Fig. 2 I–K). Conversely, upregulation of tension increased the size of AJs in the monolayers (Fig. 2 L, J, and I). Thus, tugging forces appear to
Y27632 (25 μM, Y27), siRNA against myosin II A (siMyoIIA), myosin II B (siMyoIIB), tension agonists included nocodazole (1 μM, Noc), calyculin-A (1nM, Calyce), lentivirally encoding phosphomimetic light chain (ppMLC). Control conditions included vehicle control (Ctrl), control siRNA (siCyclophilin), no treatment (NT), or lentiviral wild-type MLC (wtMLC). * p < 0.05 indicates comparison against vehicle control, # p < 0.05 indicates comparison against control siRNA, and Δ p < 0.05 indicates comparison against wtMLC. (A) Cell size is regulated by changes in actomyosin-mediated tension. Bowtie pairs exposed to the conditions in (A and B) and stained for β-catenin. (D–G) Relationship between AJ size and force per microneedle. (H–L) Inhibition of Fc by blebbistatin, Y27632 (D) or treatment with siRNA against myosin II A or B (E) leads to reduced junction size, whereas elevated Fc following stimulation with nocodazole, calyculin-A (F), or infected with lentivirus encoding phosphomimetic mutants (G) increased junction size. Aj size and Fc measurements at least 10 bowtie pairs per condition were clustered and plotted as an elliptical fit (D–G). Statistical significance between conditions is reported in Table S1. (H) A scatter plot showing the correlation between AJ size and Fc across all conditions. (I–L) Tension manipulations affect AJs in monolayers. Immunofluorescence images showing changes in AJs (anti–β-catenin) in HPAECs monolayers exposed to tension-manipulating conditions (I). Quantification of monolayer junctional response (I–L). * p < 0.05 indicates comparison against control monolayers; Ctrl (J), siCyclophilin (K), or wtMLC (L). All scale bars are 10 μm. Error bars denote standard error of the mean.

Rac Activity and Tugging Force Cooperate to Regulate AJ Size. To examine whether Rac activity indeed cooperates with Fc to regulate AJ size, we examined the effect of jointly manipulating tension and Rac activity. RacV12 alone induced junctional disassembly without altering Fc, suggesting AJ growth does not require an increase in basal Fc. However, treatment of RacV12 cells with blebbistatin partially inhibited AJ assembly, demonstrating that Rac-induced junctions remained dependent on baseline tugging forces (Fig. 3 J–L). Conversely, with the Rac antagonist, NSC23766, attenuated the ability of phosphomimetic myosin to promote

Vasoactive Compounds Regulate AJ Size Through Rho/Force- and Rac-Dependent Pathways. While the aforementioned tension manipulations reveal an important linkage between myosin activity, tugging forces, and regulation of AJ size, these treatments lack a

physiological context. We hypothesized that physiological stimuli may also control cell–cell junction homeostasis in endothelium through tugging forces. Inflammatory agents such as thrombin have been proposed to disrupt cell–cell contacts through increased RhoA-mediated myosin-generated contraction (31), which represents a counterexample to the stimulatory effects of myosin contractility on AJs observed here (Fig. 2). Sphingosine-1-phosphate (SIP), another vasoactive compound, appears to strengthen cell–cell contact (32) at a concentration that does not impact cellular contractility (33), hinting at the possibility of a force-independent modulation of junction size.

Application of thrombin or SIP to monolayers induced the expected disruption or enhancement of AJ assembly, respectively (Fig. 3 A and B). To clarify how these permeability agents impact AJs, we assayed AJs and Fc in the bowtie-microneedle system. Traction force and Fc increased in response to thrombin without a concomitant increase in junction size (Fig. 3 C–E), resulting in a precipitous rise in mechanical stress at the junction (from 300–1000 nN/μm2). In fact, cell–cell contacts were either disrupted by thrombin or resulted in residual AJs that were shorter, fainter, and less distinct relative to controls (Fig. 3B). In contrast, SIP triggered AJ expansion in a tortuous path across the cell–cell contact, without affecting Fc (Fig. 3 D and E), and thus reduced junctional stress (to ~0.5 nN/μm2).

The uncoupling of junction size and Fc in SIP and thrombin-treated cells implies the existence of a mechanism of AJ growth that is independent of Fc, or one that modulates the coupling of AJ growth to Fc. One such mechanism could be the regulation of AJs by the Rac1 GTPase. Activated Rac1 is localized to sites of nascent cell–cell contact (15) and is implicated in regulating the assembly kinetics and strength of AJs (34). Importantly, Rac1 is activated in response to SIP (33, 35), and this activation is required for SIP-mediated junctional assembly (35). We therefore investigated the relationship of Rac1 activity to AJ size and tugging forces in the presence of vasoactive compounds. Measurements of Rac and RhoA activity (an upstream mediator for myosin/tension driven responses) revealed that thrombin robustly activated RhoA, while suppressing Rac activity (Fig. 3F). In contrast, SIP specifically upregulated Rac activity, while leaving RhoA unperturbed (Fig. 3F).

These data suggested a direct correlation between junction size and Rac activity. Rac activity can be antagonized using NSC23766, which prevents the interaction of Rac1 and its upstream activators Tiam1 and Trio (36). To test whether Rac activity was required for SIP-mediated junctional assembly, HPAECs were challenged with SIP in the presence of NSC23766 (10 μM). NSC23766 abolished SIP-induced AJ assembly (Fig. 3H and I), demonstrating that Rac activation contributes to junctional growth.

We then tested whether changes in Rho and Rac activity also contributed to thrombin-induced junctional disassembly. Pretreatment with Y27632 inhibited the thrombin-induced increase in traction forces and Fc, and prevented the disruption of junctions (Fig. 3 G–I). Remarkably, expression of a constitutively active Rac mutant (RacV12) (37) prevented thrombin-induced disassembly (Fig. 3 G–I). These finding suggest that Rac activity and tugging force are both important determinants in the response of AJs to vasoactive compounds.
Junction growth (Fig 3 J,K, and M) further supporting the hypothesis that Rac activity is permissive for force-induced junction growth. Again, similar effects were observed in monolayers as in our bovine system, suggesting that these relationships between Rho, Rac, and junction assembly are conserved in more general settings (Fig. 3 N and O). Together, these studies suggest a model whereby Rho-mediated myosin activity generates tugging forces, and Rac mediates the ability of AJs to assemble in response to those forces (Fig. 3P).

Tugging Force Is Necessary and Sufficient for Rho-dependent AJ Assembly. While the aforementioned studies argue that tugging forces cause AJ assembly, the reliance on myosin manipulations cannot preclude indirect effects of these manipulations on cortical actin assembly. Moreover, single-end-point studies do not provide any insights into the temporal coupling of these phenomena. To address these shortcomings, we characterized the dynamic response of AJs to the acute stimulation of contractility in one cell of a bovine pair. Microinjection of the activated RhoA-Q63L produced an immediate and robust increase in both traction forces (the noninjected cell shows a delayed response) and F_1 (Fig. 4 B and D), whereas no effect was observed upon microinjection of wild-type RhoA (Fig. 4 A and C). Importantly, RhoA-Q63L triggered AJ growth, as revealed by GFP-β-catenin localization, within minutes of rising F_1 (Movies S1 and S2 and Fig. 4 E and F), in a tension-dependent manner (Movies S1 and S2 and Fig. 4F). To confirm whether mechanical force is truly sufficient to promote junction growth, we also placed a micropipette on one of the cells within the bowtie pair and pulled to apply an exogenous tugging force (Movies S3 and S4 and Fig. 4G). Mechanical loading of the cell–cell junction also promoted VE-cadherin assembly within several minutes of tugging (Movies S3 and S4 and Fig. 4 G and H). These data provide direct evidence that adherens junction assembly responds to cell–cell forces.
Fig. 4. Microinjection of constitutively active RhoA and direct mechanical tugging leads to junction assembly. (A and B) Time-series plots showing enhancement of traction force in response to microinjection of constitutively active Rho protein (RhoA-Q63L) (B) but not wild-type Rho protein (wt) (A) for each of the two cells in bowtie pairs. Dotted arrow indicates the time point of microinjection, and only Cell I (Purple Line) was microinjected. Whiskers show the range of traction force observed in two independent bowtie movies. (C and D) Microinjection of RhoA-Q63L (D) but not wild-type Rho protein (C), acutely boosts tugging forces for each of the two cells in bowtie pairs. Dotted arrow indicates the time point of microinjection. Whiskers show the range of two microinjected bowtie pairs across all time points. (E) Representative image frames showing assembly of GFP-VE-cadherin following microinjection of RhoA-Q63L, 10 minutes before and 16 minutes after microinjection, respectively. Dotted white lines indicate the location of the pipette and the red arrowheads point to locations of increased AJ size. Scale bar is 10 μm. (F) RhoA-Q63L induced AJ assembly in a tension-dependent manner. The RhoA-microinjected pairs (Orange Squares) showed an increase in junction size while pretreatment with Y27632 (25 μM) blocked this effect (Blue Squares). Dotted arrow indicates the time point of microinjection. Whiskers show the range of two replicated experiments across all time points. (G) Exogenous tugging force stimulated VE-cadherin assembly. Fluorescence micrograph of GFP-VE-cadherin distribution prior to micropipet-mediated mechanically tugging of the cell–cell junction. Dotted white lines indicate the location of the pipette and the white arrow points to the direction of pipette movement. Region of interest (Green Box) shows distribution of junctional VE-cadherin before (0 min) and after tugging (4 min), pseudocolored green and red, respectively in the overlay image. Yellow boxes denote the regions of the AJ showing the strongest cadherin recruitment. Scale bar is 10 μm. (H) Quantification of AJ growth in response to mechanical tugging. AJ size of bowtie pairs over 10 min intervals plotting for baseline (Green Line), with pipette on top of the cell but no tugging (Blue Line), or before and after tugging one cell of the bowtie (Red). Black arrow indicates the time point of tugging with the micropipet. Whiskers show the standard error of the mean across six independent experiments.

Discussion

Tugging forces are critical in morphogenesis, mechanical integrity, and in generating gradients of mechanical stresses to regulate patterns of cell function (38–40). Prior research has emphasized the role of externally applied forces necessary in breaking or remodeling cell–cell adhesions (23, 24, 27). Herein we demonstrate an approach to directly measure endogenous stresses generated between cells and illustrated that such tugging forces induce junction growth. Tugging force measurements were facilitated by bowtie patterns to constrain cells to a single contacting interface. Because cell shape and cell–cell contact can alter cytoskeletal organization (41, 42), results using the bowtie configuration may not extend to other settings. Yet many of the observed responses of tugging forces and AJ size in bowties appear to be similar in monolayers. Nevertheless, further characterization of tugging forces in different settings remains an important challenge.

Interestingly, AJs adjust dynamically in response to changes in tugging forces. While a requirement for myosin II in maintenance of basal AJ size is well established (10–15), here we show that activated myosin as well as direct application of exogenous tugging forces induces AJ assembly that occurs within minutes of force application. Our data suggest that mechanosensitive growth is a fundamental mechanism for controlling AJ size and is strikingly similar to what occurs at focal adhesions (18). As postulated for focal adhesions, the physiologic consequences of this force-dependent AJ growth are likely twofold. First, force-induced assembly dissipates mechanical stress and may protect the junction against breakage (43). Second, AJs are molecular signaling hubs (44), and force-induced junction assembly may trigger signaling that contributes to the process of mechanotransduction.

Although the mechanism of tugging-force-induced AJ growth remains unknown, several models can be considered. In the “zipper” model, localized myosin activation at the expanding edges of cell–cell contacts increases the surface area of cell–cell contact, thus increasing the likelihood of transcadherin interactions (15). An alternative push-pull model suggests that nascent cadherin interactions develop at filopodial-like protrusions along the cell–cell contact (45), and these filopodial-like protrusions are stabilized by the application of normal tugging forces (46). In either model, junction growth is mediated on membrane protrusive activity, a Rac1-dependent process (47).

In this context, it is especially interesting that we observe that force-dependent growth of AJs depends, in part, on Rac1 activity. Rac1 may play a permissive role in force-dependent junction growth by supporting the membrane protrusion activity implicated in the aforementioned zipper or push-pull models. Alternatively, Rac1 may play a direct role in force-mediated actin polymerization (16, 22, 48), cytoskeletal coupling of VE-cadherin (16, 25, 48), or regulation of catenin function (49). Attenuation of these Rac1-dependent processes may abrogate intracellular signaling required for force-induced junction assembly. Interestingly, we have also implicated the downregulation of Rac1 in force-dependent junctional disassembly induced by thrombin. Coordinate upregulation of tugging force (ppMLC) and downregulation of Rac (NSC23766) did not, however, trigger AJ disassembly. While thrombin may suppress Rac more potently than NSC23766, thrombin-mediated disassembly may require additional biochemical events such as thrombin-induced phosphorylation of catenins (50), in addition to reciprocal up/downregulation of tugging force and Rac1 activity. Regardless, our findings
underscore the complex and adaptive interplay between signaling, mechanical forces, and junctional structure.

Not only do tugging forces regulate cell–cell adhesions, but cell–cell adhesions can, in turn, trigger many signals including the Rho GTPases to regulate cellular mechanics (41). This interplay between force and adhesion highlights how channeling of actomyosin-generated traction and tugging forces at the cell–matrix and cell–cell interface provide a means to dynamically reorganize cell–matrix and cell–cell adhesions locally, as well as the architecture of tissues globally, and further support coordinated crosstalk between the two mechanical interfaces of the cell with its external environment. Understanding the balance between forces across each of these two interfaces ultimately may help to explain multicellular reorganizations such as occur during tissue morphogenesis and demonstrates the need for better approaches to describe these forces.

Materials and Methods

The experimental methods and protocols are described briefly; a detailed description is included in SI Text. PDMS microarray electrode substrates were fabricated to explore the complex and adaptive interplay between signaling, mechanical forces, and junctional structure.

Not only do tugging forces regulate cell–cell adhesions, but cell–cell adhesions can, in turn, trigger many signals including the Rho GTPases to regulate cellular mechanics (41). This interplay between force and adhesion highlights how channeling of actomyosin-generated traction and tugging forces at the cell–matrix and cell–cell interface provide a means to dynamically reorganize cell–matrix and cell–cell adhesions locally, as well as the architecture of tissues globally, and further support coordinated crosstalk between the two mechanical interfaces of the cell with its external environment. Understanding the balance between forces across each of these two interfaces ultimately may help to explain multicellular reorganizations such as occur during tissue morphogenesis and demonstrates the need for better approaches to describe these forces.

Materials and Methods

The experimental methods and protocols are described briefly; a detailed description is included in SI Text. PDMS microarray electrode substrates were fabricated to explore the complex and adaptive interplay between signaling, mechanical forces, and junctional structure.

Not only do tugging forces regulate cell–cell adhesions, but cell–cell adhesions can, in turn, trigger many signals including the Rho GTPases to regulate cellular mechanics (41). This interplay between force and adhesion highlights how channeling of actomyosin-generated traction and tugging forces at the cell–matrix and cell–cell interface provide a means to dynamically reorganize cell–matrix and cell–cell adhesions locally, as well as the architecture of tissues globally, and further support coordinated crosstalk between the two mechanical interfaces of the cell with its external environment. Understanding the balance between forces across each of these two interfaces ultimately may help to explain multicellular reorganizations such as occur during tissue morphogenesis and demonstrates the need for better approaches to describe these forces.

Materials and Methods

The experimental methods and protocols are described briefly; a detailed description is included in SI Text. PDMS microarray electrode substrates were fabricated to explore the complex and adaptive interplay between signaling, mechanical forces, and junctional structure.

Not only do tugging forces regulate cell–cell adhesions, but cell–cell adhesions can, in turn, trigger many signals including the Rho GTPases to regulate cellular mechanics (41). This interplay between force and adhesion highlights how channeling of actomyosin-generated traction and tugging forces at the cell–matrix and cell–cell interface provide a means to dynamically reorganize cell–matrix and cell–cell adhesions locally, as well as the architecture of tissues globally, and further support coordinated crosstalk between the two mechanical interfaces of the cell with its external environment. Understanding the balance between forces across each of these two interfaces ultimately may help to explain multicellular reorganizations such as occur during tissue morphogenesis and demonstrates the need for better approaches to describe these forces.

Materials and Methods

The experimental methods and protocols are described briefly; a detailed description is included in SI Text. PDMS microarray electrode substrates were fabricated to explore the complex and adaptive interplay between signaling, mechanical forces, and junctional structure.

Not only do tugging forces regulate cell–cell adhesions, but cell–cell adhesions can, in turn, trigger many signals including the Rho GTPases to regulate cellular mechanics (41). This interplay between force and adhesion highlights how channeling of actomyosin-generated traction and tugging forces at the cell–matrix and cell–cell interface provide a means to dynamically reorganize cell–matrix and cell–cell adhesions locally, as well as the architecture of tissues globally, and further support coordinated crosstalk between the two mechanical interfaces of the cell with its external environment. Understanding the balance between forces across each of these two interfaces ultimately may help to explain multicellular reorganizations such as occur during tissue morphogenesis and demonstrates the need for better approaches to describe these forces.

Materials and Methods

The experimental methods and protocols are described briefly; a detailed description is included in SI Text. PDMS microarray electrode substrates were fabricated to explore the complex and adaptive interplay between signaling, mechanical forces, and junctional structure.

Not only do tugging forces regulate cell–cell adhesions, but cell–cell adhesions can, in turn, trigger many signals including the Rho GTPases to regulate cellular mechanics (41). This interplay between force and adhesion highlights how channeling of actomyosin-generated traction and tugging forces at the cell–matrix and cell–cell interface provide a means to dynamically reorganize cell–matrix and cell–cell adhesions locally, as well as the architecture of tissues globally, and further support coordinated crosstalk between the two mechanical interfaces of the cell with its external environment. Understanding the balance between forces across each of these two interfaces ultimately may help to explain multicellular reorganizations such as occur during tissue morphogenesis and demonstrates the need for better approaches to describe these forces.

Materials and Methods

The experimental methods and protocols are described briefly; a detailed description is included in SI Text. PDMS microarray electrode substrates were fabricated to explore the complex and adaptive interplay between signaling, mechanical forces, and junctional structure.

Not only do tugging forces regulate cell–cell adhesions, but cell–cell adhesions can, in turn, trigger many signals including the Rho GTPases to regulate cellular mechanics (41). This interplay between force and adhesion highlights how channeling of actomyosin-generated traction and tugging forces at the cell–matrix and cell–cell interface provide a means to dynamically reorganize cell–matrix and cell–cell adhesions locally, as well as the architecture of tissues globally, and further support coordinated crosstalk between the two mechanical interfaces of the cell with its external environment. Understanding the balance between forces across each of these two interfaces ultimately may help to explain multicellular reorganizations such as occur during tissue morphogenesis and demonstrates the need for better approaches to describe these forces.

Materials and Methods

The experimental methods and protocols are described briefly; a detailed description is included in SI Text. PDMS microarray electrode substrates were fabricated to explore the complex and adaptive interplay between signaling, mechanical forces, and junctional structure.

Not only do tugging forces regulate cell–cell adhesions, but cell–cell adhesions can, in turn, trigger many signals including the Rho GTPases to regulate cellular mechanics (41). This interplay between force and adhesion highlights how channeling of actomyosin-generated traction and tugging forces at the cell–matrix and cell–cell interface provide a means to dynamically reorganize cell–matrix and cell–cell adhesions locally, as well as the architecture of tissues globally, and further support coordinated crosstalk between the two mechanical interfaces of the cell with its external environment. Understanding the balance between forces across each of these two interfaces ultimately may help to explain multicellular reorganizations such as occur during tissue morphogenesis and demonstrates the need for better approaches to describe these forces.