

For Scientists...By Scientists

eFood - European Food Scientist

European Laboratory

Analytical/Lab Equipment

European Food Scientist

Food & Drink Processing

Packaging & Labelling

Opinion

New products

Food Hygiene

Ingredients

Scientist

Opinion

Drug Discovery

Biotechnology

Chromatography

Process Technology

www.scientistlive.com

scientis

eLab - European Laboratory Scientist 📕 eMed - European Medical Scientist 📕 Make Scientist Live your home page

Nano-sensors measure cellular forces

November 1, 2007

subscribe

contact us

about Scientist Live, please enter their email address below

Click here for FREE subscription to eLab, eMed and eFood magazines

SITE MAP To view the scientistlive site map Click Here

University of Pennsylvania researchers have designed a nanoscale system to observe and measure how individual cells react to external forces.

By combining micro-fabricated cantilevers and magnetic nanowire technology to create independent, nanoscale sensors, the study showed that cells respond to outside forces and demonstrated a dynamic biological relationship between cells and their environment.

The study also revealed that cells sense force at a single adhesion point that leads not to a local response but to a remote response from the cell's internal forces, akin to tickling the cell's elbow and watching the knee kick.

"The cell senses the force that we apply and adjusts its own internal forces to compensate," Chris Chen, an associate professor in the Department of Bioengineering in the School of Engineering and Applied Science at Penn, said. "This suggests that either the cell's cytoskeleton dictates the reaction or the cell organizes a biochemical response. In either instance, cells are adapting at the micro-scale."

Top Stories

- Taste sensors found in instestine

- Brocolli boosts immune system
- Role of axons revamped
- Rich colours increase benefits
- Harmful effects of loneliness
- Depression over-diagnosed?
- Adjusting resistance in semiconductors

MORE ...

forces play a strong role in how whole tissue grows and functions. how forces are sensed or generated in normal and diseased cells.

To study the cell's biomechanical response to forces, Chen and his an array of non-magnetic posts. In the magnetic field, the posts with

For both types of responses, the sub-cellular distribution of loss in traction forces was not confined to locations near the actuated micro-post or uniformly across the whole cell but instead occurred at discrete locations along the cell periphery. Together, these data suggest that cells actively adjust their internal tension to mechanical forces arising in their microenvironment and reveal an important dynamic biological relationship between external and internal forces.

Mechanical forces contribute to many cellular functions, including

The findings prove useful to more than just an understanding of the mechanics of single cells. Physical

Using the Penn system, researchers could monitor for differences in This could lead to new therapeutic drug targets and to methods for modifying how cells interact with each other.

team applied force to each cell using micro-fabricated arrays of magnetic posts containing cobalt nanowires interspersed amongst nanowires applied an external force to cells cultured on the tops of the posts. Nonmagnetic posts acted as sensors in which traction forces in each cell were measured. Recording the traction forces in response to such force stimulation revealed two responses: a sudden loss in contractility that occurred within the first minute of stimulation or a gradual decay in contractility over several minutes.

http://www.scientistlive.com/daily-news/6.1/18631/nanosensors-measure-cellular-forces.thtml

European Medical Scientist

Interview

E- Healthcare

Contract Manufacturing

Packaging and Labelling

Instrumentation and Control

Drug Delivery

Specialist Materials

Special Focus: Medical Diagnostics changes in gene expression, proliferation and differentiation.

Applying shear or tensile stresses to cells in culture, for example, can induce changes in adhesion regulation, intracellular signalling and cell function much like internal forces do. The similarities in cellular responses to external and internal forces have led to the suggestion that both types of forces may use shared mechanotransduction pathways to convert mechanical stimuli into biochemical signals. While externally applied and internally generated forces may act independently on cells, the University of Pennsylvania team postulated and then showed that they are coupled.

Related links: Reaffirming quantum mechanics | Nano-nuking cancer cells | Step towards a super-computer | Nanoscale exploration of deep traps |

eFood | eLab | eMed | Subscribe | Contact us | Home

BACK TO MAIN PAGE

EMAIL THIS ARTICLE TO A COLLEAGUE

PRIVACY STATEMENT

ВАСК ТО ТОР