Mechanical forces contribute to many cellular functions, including changes in gene expression, proliferation and differentiation. Applying shear or tensile stresses to cells in culture, for example, can induce changes in traction forces in response to such force stimulation revealed two responses: a sudden loss in contractility that occurred within the first minute of stimulation or a gradual decay in loss in traction forces was not confined to locations near the actuated micropost or uniformly across the whole cell but suggested that each cell's cytoskeleton dictates the reaction or the cell organizes a biochemical response. In either instance, cells are adapting at the micorscale.

The findings prove useful to more than just an understanding of the mechanics of single cells. Physical forces play a strong role in how whole tissue grows and functions. Using the Penn system, researchers could monitor for differences in how forces are sensed or perceived. This could lead to new therapeutic drug targets and to methods for modifying how cells interact with each other.

To study the cell's biomechanical response to forces, Chen and his team applied force to each cell using microfabricated arrays of magnetic posts containing cobalt nanowires interspersed amongst an array of non-magnetic posts. In the magnetic field, the posts with nanowires applied an external force to cells cultured on the tops of the posts. Nonmagnetic posts acted as sensors in which traction forces in each cell were measured. Recording the traction forces in response to such force stimulation revealed two responses: a sudden loss in contractility that occurred within the first minute of stimulation or a gradual decay in contractility over several minutes.

For both types of responses, the subcellular distribution of loss in traction forces was not confined to locations near the actuated micropost or uniformly across the whole cell but instead occurred at discrete locations along the cell periphery. Together, these data suggest that cells actively adjust their internal tension to mechanical forces arising in their microenvironment and reveal an important dynamic biological relationship between external and internal forces.

Mechanical forces contribute to many cellular functions, including changes in gene expression, proliferation and differentiation. Applying shear or tensile stresses to cells in culture, for example, can induce changes in adhesion regulation, intracellular signaling and cell function much like internal forces do. The similarities in cellular responses to external and internal forces have led to the suggestion that both types of forces may use shared mechanotransduction pathways to convert mechanical stimuli into biochemical signals. While externally applied and internally generated forces may act independently on cells, the University of Pennsylvania team postulated and then showed that they are coupled.

The study was conducted by Chen, Nathan J. Sniedecki, Michael T. Yang and Zhijun Liu of the Department of Bioengineering as well as Alexandre Anguelouch, Corinne M. Lamb, Stuart B. Kirschner, Yaohua Liu and Daniel H. Reich of Johns Hopkins University. The research was funded by grants from the National Institutes of Health, an Army Research

Related News Sections
- Plants & Animals
- Matter & Energy

Related News Topics
- Cell Biology
- Biochemistry
- Biotechnology
- Molecular Biology
- Developmental Biology
- Genetics

Related Science Stories
- Novel Zigzag Shape Gives Sensors Magnetic Appeal
- Direct Interconnections Between Nanowires And Human Cells
- Side-to-side Shaking Of Nanoresonators Throws Off Impurities
- Combined Forces On The Track
- New Fabrication Technique Yields Nanoscale UV LEDs

Related Encyclopedia Articles
- Somatic cell
- Therapeutic cloning
- Shear stress
- Cell membrane
- Natural killer cell
- Mechanics
- Plant cell
- Heat shock protein
- T cell
- Biosensor

Bioengineers Devise Nanoscale System To Measure Cellular Forces

Science Daily — University of Pennsylvania researchers have designed a nanoscale system to observe and measure how individual cells react to external forces.

By combining microfabricated cantilevers and magnetic nanowire technology to create independent, nanoscale sensors, the study showed that cells respond to outside forces and demonstrated a dynamic biological relationship between cells and their environment.

The study also revealed that cells sense force at a single adhesion point that leads not to a local response but to a remote response from the cell's internal forces, akin to tickling the cell's elbow and watching the knee kick. "The cell senses the force that we apply and adjusts its own internal forces to compensate," Chris Chen, an associate professor in the Department of Bioengineering in the School of Engineering and Applied Science at Penn, said. "This suggests that either the cell's cytoskeleton dictates the reaction or the cell organizes a biochemical response. In either instance, cells are adapting at the micorscale."

The findings prove useful to more than just an understanding of the mechanics of single cells. Physical forces play a strong role in how whole tissue grows and functions. Using the Penn system, researchers could monitor for differences in how forces are sensed or perceived. This could lead to new therapeutic drug targets and to methods for modifying how cells interact with each other.

To study the cell's biomechanical response to forces, Chen and his team applied force to each cell using microfabricated arrays of magnetic posts containing cobalt nanowires interspersed amongst an array of non-magnetic posts. In the magnetic field, the posts with nanowires applied an external force to cells cultured on the tops of the posts. Nonmagnetic posts acted as sensors in which traction forces in each cell were measured. Recording the traction forces in response to such force stimulation revealed two responses: a sudden loss in contractility that occurred within the first minute of stimulation or a gradual decay in contractility over several minutes.

For both types of responses, the subcellular distribution of loss in traction forces was not confined to locations near the actuated micropost or uniformly across the whole cell but instead occurred at discrete locations along the cell periphery. Together, these data suggest that cells actively adjust their internal tension to mechanical forces arising in their microenvironment and reveal an important dynamic biological relationship between external and internal forces.

Mechanical forces contribute to many cellular functions, including changes in gene expression, proliferation and differentiation. Applying shear or tensile stresses to cells in culture, for example, can induce changes in adhesion regulation, intracellular signaling and cell function much like internal forces do. The similarities in cellular responses to external and internal forces have led to the suggestion that both types of forces may use shared mechanotransduction pathways to convert mechanical stimuli into biochemical signals. While externally applied and internally generated forces may act independently on cells, the University of Pennsylvania team postulated and then showed that they are coupled.

The study was conducted by Chen, Nathan J. Sniedecki, Michael T. Yang and Zhijun Liu of the Department of Bioengineering as well as Alexandre Anguelouch, Corinne M. Lamb, Stuart B. Kirschner, Yaohua Liu and Daniel H. Reich of Johns Hopkins University. The research was funded by grants from the National Institutes of Health, an Army Research
Office of Multidisciplinary University Research Initiative, the Materials Research Science and Engineering Center of Hopkins and Penn's Nano/Bio Interface Center.

Note: This story has been adapted from a news release issued by University of Pennsylvania.

Gene Synthesis: 1,091 bp; made possible by our new patented technology!
www.sloning.com

Lowest Price Guaranteed
Lowest ever.
www.TextbookOnly.com

7 Deadly Sins Tamed
Genetic origin of Seven Deadly Sins discovered and controlled.
bellefulvingnow.blogspot.com

Gene Synthesis:
1,091 bp; made possible by our new patented technology!
www.sloning.com

New! Search Science Daily or the entire web with Google:

Copyright © 1995-2007 ScienceDaily LLC — All rights reserved — Contact: editor@sciencedaily.com

About This Site | Editorial Staff | Awards & Reviews | Contribute News | Advertise With Us | Privacy Policy | Terms of Use