Cells in Blood Vessel Found to Cling More Tightly in Regions of Rapid Flow

Published: April 26, 2012 University of Washington

Clogging of pipes leading to the heart is the planet’s number one killer. Surgeons can act as medical plumbers to repair some blockages, but we don’t fully understand how this living organ deteriorates or repairs itself over time.

Researchers at the University of Washington have studied vessel walls and found the cells pull more tightly together, reducing vascular leakage, in areas of fast-flowing blood. The finding could influence how doctors design drugs to treat high cholesterol, or how cardiac surgeons plan their procedures.

Their paper will be published in an upcoming issue of the American Journal of Physiology - Heart and Circulatory Physiology.

“Our results indicate that these cells can sense the kind of flow that they're in, and structurally change how they hold themselves together,” said lead author Nathan Sniadecki, a UW assistant professor of mechanical engineering. “This highlights the role that cellular forces play in the progression of cardiovascular disease.”

It’s known that the arteries carrying blood are leakier in areas of slow flow, promoting cholesterol buildup in those areas. But medical researchers believed this leakage was mostly biochemical – that cells would sense the slower flow and modify how proteins and enzymes function inside the cell to allow for more exchange.

The new results show that, like a group of schoolchildren huddling closer in a gust of wind, the cells also pull more tightly together when the blood is flowing past.

http://www.sciencenewsline.com/medicine/2012042620150037.html
"The mechanical tugging force leads to a biochemical change that allows more and more proteins at the membrane to glue together," Sniadecki said. "We're still trying to understand what's happening here, and how mechanical tugging leads more proteins to localize and glue at the interface."

Sniadecki's group looks at the biomechanics of individual cells. For this experiment, they grew a patch of human endothelial cells, the thin layer of cells that line the inner walls of arteries and veins and act as a sort of nonstick coating for the vessels' walls. They grew the patch on an area about the width of a human hair, manufactured with 25 by 25 tiny flexible silicon posts.

The researchers then looked at how much the cells bend the posts under different flow conditions in order to calculate how strongly the cells were tugging on their neighbors. When the flow was fast, the force between the cells increased, while the gaps between cells shrank.

Knowing how cells respond to blood flow could help find new drugs to promote this tugging between cells. Better understanding of the interaction between blood flow and heart health could also guide surgeries.

"People could do simulations so a surgeon goes, 'Ah, I should cut here versus over here, because that reconstruction will be a smoother vessel and will lead to fewer complications down the line, or as I put this stent in, put it here and make it more aerodynamic in design,’” Sniadecki said.

Related Articles

medicine

Takina 'Shine' to Heart Repair
American Friends of Tel Aviv University

After a heart attack or stroke, heart scarring can lead to dangerously paper-thin heart walls and a decreased ability to pump blood through the body. Although the heart is unable to completely heal itself, a new treatment developed at Tel Aviv University uses laser-treated bone marrow stem cells to help restore heart function and health.

Nanoblasts from Laser-activated Nanoparticles Move Molecules, Proteins And DNA into Cells
Georgia Institute of Technology Research News

Using chemical "nanoblasts" that punch tiny holes in the protective membranes of cells, researchers have demonstrated a new technique for getting therapeutic small molecules, proteins and DNA directly into living cells.

Scientists Make Strides Toward Fixing Infant Hearts
Rice University

Researchers at Rice University and Texas Children's Hospital have turned stem cells from amniotic fluid into cells that form blood vessels. Their success offers hope that such stem cells may be used to grow tissue patches to repair infant hearts.

Single Cell Injections
American Physical Society

Duke University physicists have developed a way to produce sharp fluid jets with enough precision that they can inject material into a single, living cell. The technique promises a way to deliver drugs to cells one at a time, which is likely to be very valuable for research involving stem cells and other cellular-level studies. The research appears in the current issue of the APS journal Physical Review Letters.
Polytechnique Montréal
Researchers at Polytechnique Montréal have succeeded in changing the genetic material of cancer cells using a brand-new transfection method. This major breakthrough in nanosurgery opens the door to new medical applications, among others for the treatment of cancers. A light scalpel to treat cancerous cells

Penn Research Points to New Way of Preserving Fertility for Boys Undergoing Cancer Treatment
University of Pennsylvania
Treatments for childhood cancers are increasingly successful with cure rates approaching 80%, but success often comes with a downside for the surviving men: the cancer treatments they received as boys can leave them sterile as adults. Now, a research team led by Ralph Brinster of the University of Pennsylvania School of Veterinary Medicine has completed a 14-year experiment that gives hope for a technique that could restore their fertility.

Most Popular - Medicine »

FISH »
A Fish a Day Keeps the Doctor Away?
Most people, whether healthy or having cardiovascular disease (CVD), would benefit from regular consumption of oily fish, concluded speakers at the EuroPRevent 2012 meeting. While eating whole fish undoubtedly ...

CARE »
US Spends Far More for Health Care Than 12 Industrialized Nations, but Quality Varies
May 3, 2012, New York, NY—The United States spends more on health care than 12 other industrialized countries yet does not provide "notably superior" care, according to a new ...

DRINKING »
Anti-smoking Drug Decreases Alcohol Consumption in Heavy-drinking Smokers
The smoking cessation drug varenicline significantly reduced alcohol consumption in a group of heavy-drinking smokers, in a study carried out by researchers at the Ernest Gallo Clinic and Research ...

HAIR »
Naturally Blond Hair in Solomon Islanders Rooted in Native Gene, Stanford Study Finds
STANFORD, Calif. — The common occurrence of blond hair among the dark-skinned indigenous people of the Solomon Islands is due to a homegrown genetic variant distinct from the gene ...

CELLS »
Beehive Extract Shows Potential as Prostate Cancer Treatment
An over-the-counter natural remedy derived from honeybee hives arrests the growth of prostate cancer cells and tumors in mice, according to a new paper from researchers at the University ...