Session 9 MICRORHEOLOGY

Microbeads

- In 1977, J. Ugelstad made batches of "identical" polystyrene beads
- Two step swelling process:
 - Polymer seed particle in water
 - Grows by incorporating slightly water soluble organic compounds
- Magnetic beads:
 - Porous beads with oxidative groups
 - Mixed with Fe²⁺ solutions
 - Forms magnetic oxides
- Surface chemistry tailored

Microbeads for Forcing and Sensing

- Force system: Magnetic Tweezers
 - Coat the bead with ECM
 - Apply magnetic field to pull on bead
- Probe system: Microrheology
 - Inject fluorescent beads inside cell
 - Particle tracking of thermal fluctuations inside cell

• Magnetic force from magnetic field gradient $F = \mu \bullet \nabla B$ $\mu = magnetic moment$ B = magnetic field

Calibration

Stokes' Law for low Reynolds numbers F= 6πηRv

 $\eta = viscosity$ R = particle radius

Adhesion-CSK Connection

- Bead treated with *p*-toluene-sulfonyl (tosyl)
- Sulfonyl esters react covalently with fibronectin
 Direct coupling to CSK via integrins

figure 1. Dynabeads@ M-450 Tosylactivated Surface tosyl groups Burface tosyl groups b

The Measurement

"Classic" Creep Response

- Elastic displacement (Regime I)
- Relaxation (Regime II)
- Steady-state Flow (Regime III)

The Model

- Effective elastic modulus k = k₁+k₂
- Viscosity γ₀
 Relaxation time τ

O

1.5

Creep data

2.0

fit curve

800 -

600 -

400

200

0

0.0

0.5

1.0

Time (s)

x(t)/F [m/N]

Viscoelastic Properties

- Same symbol:
 - Multiple measurements, one location
- Open/closed symbols:
 - Same cell, different locations
- Parameters vary cell-to-cell

Strain Field

- Magnetic bead (M)
- Latex beads (#1-9)
 - Nonmagnetic, 1 μm
 - Fibronectin coated
 - 3 beads untrackable
- F = 3.7 nN, 1 sec

Deep strain fields

- Cell vacuoles show displacement under magnetic bead force.
- Shear on the cell surface penetrates partially into the cytoplasm

Cell Mechanical Coupling Model

Composite shell

- Lipid-protein bilayer
- Cortical actin

Microrheology

- Noninvasive probe of local viscoelasticity
- Monitor the motion of particles (100 nm diameter)

The Method

- Injecting probes into cytoplasm
 - Microinjector for 2D loading
 - Ballistic injection for 3D loading

Particle Tracking

• Mean squared displacement (MSD)... $<\Delta r^2(\tau)>$

- τ is the time lag (a/k/a frame rate)
- t is the elapsed time (a/k/a video length)
- * $<\Delta r^2(\tau) > = MSD_x(\tau) + MSD_y(\tau)$

$$MSD_{x}(\tau) = \frac{\sum_{i=1}^{N} (x(t_{i} - \tau) - x(t_{i}))^{2}}{N+1}$$
$$MSD_{y}(\tau) = \frac{\sum_{i=1}^{N} (y(t_{i} - \tau) - y(t_{i}))^{2}}{N+1}$$

Local Creep Compliance, Γ(τ)
 Describes local deformations of cytoplasm by thermal motion of particles

 $\Gamma(\tau) = \frac{3\pi D}{4k_{B}T} < \Delta r^{2}(\tau) > \quad [\text{cm}^{2}/\text{dyne}]$

Viscoelastic Properties Complex viscoelastic shear modulus, G*(ω) $|G^*(\omega)| = \frac{2k_B T}{3\pi \langle \Delta r^2(1/\omega) \rangle \Gamma(1+\alpha(\omega))}$ where $\omega = 1/\tau$ and $\alpha(\omega) = \partial(\ln \langle \Delta r^2(\tau) \rangle)/\partial(\ln t)$ Shear storage modulus $G'(\omega) = |G^*(\omega)| \cos(\pi \alpha(\omega)/2)$ Shear loss modulus $|G''(\omega)| = |G^*(\omega)| \sin(\pi\alpha(\omega)/2)$

Viscous Liquids vs. Elastic Solids
For water or glycerol

 $\left\langle \Delta r^2(\tau) \right\rangle = \frac{2k_B T D_0 \tau}{\pi \eta D} \qquad G^*(\omega) = i\eta \omega$

- Storage Modulus: $G'(\omega) = Re(G^*) = o$
- Loss Modulus: $G''(\omega) = Im(G^*) = \eta$

For a solid (Laplace transformed)

$$<\Delta r^2(s)>=rac{2k_BT}{\pi GD}rac{1}{s}$$
 $G^*(\omega)=G$

- Storage Modulus: $G'(\omega) = Re(G^*) = G$
- Loss Modulus: $G''(\omega) = Im(G^*) = 0$

Shear

- Shear Stress $\tau = F/A$
- Shear Strain $\gamma = \delta/H$
- Shear Rate $d\gamma/dt = (d\delta/dt)/H$

τ = G γ
τ = η dγ/dt

(Solid) storage of strain(Fluid) dissipation of strain

Viscous Liquid to Viscous Solid

VEGF softens a cell, but ROCK inhibition restores stiffness

QUESTIONS?