Session 8 ATOMIC FORCE MICROSCOPY

The Approach

- G. Binning (Stanford) in 1986
- Deflection of a cantilever spring

Main parts

- Cantilever tip
- Laser Diode
- Photodiode
- Stage

The System

- Configured with optical microscopes
- Cells need softest cantilevers
- Range: 100 μm scan, 10 μm tall

- F Loading Force
- K Bending Stiffness (35 nN/μm)
- d Displacement
- E Modulus of Elasticity (100 GPa)
- w Cantilever width (30 μm)
 - Cantilever thickness (1 µm)
- Cantilever length (150 μm)

Imaging Mode

- Constant deflection mode (constant force)
- Distance Feedback
 - <u>Height signal</u> : output of the feedback
 - Specimen height (3-4 μm)
 - <u>Deflection signal</u> : residual, uncompensated deflections
 - Provides fine details (100 nm)
 - True Height: A + B
- DC vs. AC mode

Deflection signal

Force Measurement

Force Curve

- Out of contact, no deflection
- In contact, deflection proportion to sample height

Force Measurement

Indentation comes from sample compression

- d = $(z-z_o) \delta$
- Hertzian contact for a "conical punch"

Force Measurement

Sample Stiffness

$$z - z_0 = d + \sqrt{\frac{2dK(1 - v^2)}{\pi \tan(\alpha)E}}$$

Measurement for sample height (z_o) not easy
 Two fit-parameters: E and z_o

Regional difference in cell stiffness

Line Scan

Stacked force
 curves

- Shows height of cell along scan
- Cell body: more compressible

 Periphery: less compressible

2D Scan

Constant Force Topography

Feel the substrate

Low loads – surface

High loads – CSK

Elastic Tomography

Stiffness Matching

Glass(1 GPa)

Gel
 (5 kPa)

Stiffness regimes

For 1-5 kPa, cell stiffness matches substrate
 For >5 kPa, cells are softer than substrate

The softness of cancer

- Method to distinguish between metastatic cancer and normal cells
- Cancer needs to be flexible to migrate through tissue to get into blood stream

Jian Yu Rao, Yu-Sheng Jin, and James Gimzewski, and Sarah Cross (UCLA)

Nature Nanotech. 2, 780–783 (2007)

Force of protrusion

- Sideways mounted AFM
- Stall force detected
 - F = 1.18 ± 0.35 nN
- Elastic Brownian Ratchet
 - 3 μm x 0.2 μm AFM contact area
 - 4 pN force per filament
 - 100 actin filaments pushing
 - 2 kPa lamellipodia pressure

The Future?

Nanoink's 2D nano PrintArray for nanoscale patterns

High throughput cell measurements?

Adhesion Force Measurement If adhesive, tip sticks during retraction Van der waals forces hold onto the tip

Integrin Adhesion Forces

- Fibronectin and α₅β₁-integrin on vascular smooth muscle cells
 Individual bond force is 39 ± 8 pN
- Cells have multiple bonds at each focal adhesion due to integrin clustering

Am J Physiol Heart Circ Physiol 289: H2526-H2535, 2005.