Session 21 CANTILEVER FORCE SENSORS

<u>MicroElectroMechanical Systems</u>

- Sensors and Actuators
 - Strain gauges, Pressure Sensors, Accelerometers Micromirrors, BioMEMS, etc.
 - Combined electrical, mechanical, optical, material, fluid, chemical, and/or <u>biological</u> systems

Horizontal Cantilever

- Micromachined device to measure individual focal adhesions
- Dynamic measurements of traction forces during cell migration

Fabrication

- Phosphorous-doped Glass
 - Deposit
 - Lithography
 - Etching
- Poly-Silicon #1
 - Deposit
 - Lithography
 - Etching
- Spin-on-Glass
 - Deposit
 - Lithography
 - Etching
- Poly-Silicon #2
 - Plasma deposit
 - Lithography
 - Etching
- Etch-Release

Measurement

- Cells pull in the front and retract in the rear
- Retraction force at rear releases adhesions

Microposts to Measure Cell Forces

- F Traction Force
- 5 Displacement
- E PDMS Modulus of Elasticity

Immunofluorescence

- d Post Diameter (3 μm)
- L Post Length (5-11 μm)

PDMS microposts

Deflection Measurements

6

Biofunctionalizing the Posts

* 0.2% (w/v) Pluronics[®] F127 difunctional block copolymer surfactant

Focal Adhesions and Force

Positive correlation of FA and local force

Spread Area and Force

- Contact area, i.e.
 cell spreading, promotes larger traction forces
- Constitutively

 active RhoA mutant
 causes large forces
 at low contact area

Hexagonal Packed Posts

- Closer spacing between smaller posts
- Positive correlation between stiffness and force

du Roure, *et al*. (2005) *PNAS*, 102:2390 Saez, *et al*. (2005) *Biophys J*, doi: 10.1529/biophysj.105.071217

11

Stiffness vs. Spreading

Micro-Contact Printing (Cell Spread Area)

Micropost Dimensions (Substrate Stiffness)

 $\mathsf{F} = \frac{3\pi\mathsf{E}\mathsf{d}^4}{64\mathsf{L}^3}\delta$

Array	L (μm)	d (µm)	k (nN/μm)
1	8.96 ± 0.36	2.14 ± 0.03	10.7 ± 2.3
2	7.44 ± 0.28	2.04 ± 0.06	15.5 ± 3.6
3	7.19 ± 0.22	2.22 ± 0.10	24.1 ± 6.3
4	7.45 ± 0.20	2.42 ± 0.05	30.5 ± 6.2
5	6.70 ± 0.13	2.50 ± 0.07	47.8 ± 10

Han, S.J., Ting, L.H., Bielawski, K.S., Rodriguez, M.L., Sniadecki, N.J. (2012). Biophys J. 103(4): 640-8.2

Muscle Posts

Tanaka, et al, (2006) *Lab on a Chip*, 6:230

Zhao Y, Zhang X, (2006) *Sensors* and Actuators , 127:216

Twitch Forces Increase with Stiffness

During development, myocardial stiffness coincides with increased contractile performance.

THE TRA	Stiffness	E (kPa)	G (kPa), v ≈ 0.5
ASIG	Prenatal	12 ± 4	≈ 4
	Neonatal	39 ± 7	≈ 13
	Values adapted from laset et al. L. Diemoch. ages		

Values adapted from Jacot et al. J. Biomech. 2010

Rodriguez, A.G., Han, S.J., Regnier, M. Sniadecki, N.J. (2011) *Biophys J* 101(11):2455-6**4**4

Twitch Power increases with Stiffness

Fast line
 scanning
 for velocity,
 power.

Force (IIIN)

Multicellular Measurements

Force correlates with cell growth

Ε

1.00

0.75

0.50

0.25

0.00

-0.25

FEM

Nelson, et al. (2005) PNAS, 102(33):11594 16

Bowties to Measure "Tugging" Force

For graphs: *, p < 0.05 (Student-t test)

Liu, Z., et al. (2010) Proc Nat Acad Sci . 107: 19944-9

17

Shear Flow Mechanotransduction

Ting, L.H., Jahn, J.R., Jung, J.L., Shuman, B.R., Feghhi, S., Han, S.J., Rodriguez, M.L., Sniadecki, N.J. (2012). AJP Heart. 302: H2220.

Cell-Cell Junctions Under Flow

Ting, L.H., Jahn, J.R., Jung, J.L., Shuman, B.R., Feghhi, S., Han, S.J., Rodriguez, M.L., Sniadecki, N.J. (2012). AJP Heart. 302: H2220.

Nanoposts

High resolution force measurements

Yang, et al. (2007) Adv Materials, 19:3119 2