Session 18 COMPUTATIONAL CONTINUUM MODELS

Models for Cell Mechanics

Continuum Elastic Models

- A cell can be treated as a continuous material if length scale of interest is larger than its microstructure
- Rule of thumb one or two orders of magnitude

Constitutive Law

- A model's prediction is only as good as its constitutive equations
 - Stress-strain relationship (Hooke's Law)

- Predicts what are the strains
 , but tells us nothing about microstructure!
- Coarse-graining approach lower resolution of averaged properties

Goals of Modeling

- Deduction of cells mechanical properties
 - Know stress and strain of a cell, what is constitutive relationship?
 - MTC magnetic force, bead displacement
 - Micropipette aspiration vacuum pressure, aspiration length
 - AFM cantilever force, indentation depth

Goals of Modeling

- Distinguish active from passive response
 - Active responses
 - Remodeling
 - Contraction
 - General mechanotransduction
 - Passive responses
 - Deformation

Finite element methods (FEM)

- Predicts the displacement, strain, and stress fields induced in a model
- Provide
 - Initial geometry
 - Material properties
 - Boundary conditions
- Solves equations that are not doable with analytical approaches

- Discretize model into computational elements interconnected by nodes
- Formulate "stiffness matrix" to find displacements

AFM Example

- Osteoblast stimulated with AFM tip showed calcium spikes
- Linear elastic isotropic material
 - E = 10 kPa
 - V = 0.2-0.5
- Geometric model
 - Symmetry
 - Length 15 μm
 - Thickness *t* = 0.25 5 μm
- Mesh
 - 8-node elements with dense meshing
- Boundary conditions
 - Fixed displacements
 - $u_z = 0$ on bottom
 - $u_x = o on yz-surface$
 - u_y= o on xz-surface
 - Loads
 - 1 nN load at (0,0,*t*)

Radial and Tangential Strain Radial strains largest on cell surface

Tangential strain largest at indentation area

Vertical Strain and Deformation Vertical strain largest directly under indentation

Deformation amplified 15x for visualization

Poisson's Ratio

- Poisson effect is marginal
 - Radial strain (Err) varied 30%
 - Tangential strain (Ett) was drastic
 - Vertical strain (Ezz) varied 12%

Cell Height

- Cell thickness is significant
 - Cells < 2 μm had higher strains
 - Cells > 2 μm were similar

Active Continuum Models

 Incorporates activation of contractility and reorganization of cytoskeleton

b

Simple Activation Scheme

- Assume contractility is calcium dependent
 - Actin polymerization faster than depolymerization
 - Myosin assembly by Ca²⁺/calmodulin/MLCK activation
 - Calcium concentration:

$$C = \begin{cases} 0 & t < t_i \\ \exp\left[\left(t_i - t\right) / \pi\right] & t \ge t_i \end{cases}$$

- t_i is time at instance of activation
- is decay time constant for intracellular Ca²⁺ pumps

Filament Assembly

 Degree of assembly of filaments into the contractile apparatus structure

$$\frac{dy}{dt} = (1-y)C\frac{k_f}{\pi} - y\left(1-\frac{\dagger}{\dagger}_0\right)\frac{k_b}{\pi}$$
$$0 \le y \le 1$$

- First term is assembly reaction
 - Negatively on assembly state due to fewer free monomers
 - Positively on Ca² concentration C that drives polymerization
 - Positively on forward rate constant k_f
- Second term is disassembly reaction
 - Positively on assembly state
 - Negatively on ratio of tension to isometric tension $1/1_0$ that holds filaments together
 - Positively on backward rate constant k_b

Force-Velocity Dynamics

- Partly explained by inertia of weight
- Main cause is isotonic contraction produces less force than isometric, which is zero velocity and T = T_o.

 Muscle cannot change its length instantly due to actin-myosin dynamics

Stress-Strain Rate Relationship
 Active strain rate is related to the stress by simplification of Hill's equation

Linear Elastic Constitutive Relationship

 Active Behavior: Strain rate and Average stress as vector & tensor

$$V = V_{11} \cos^2 W + V_{22} \sin^2 W + V_{12} \sin 2W$$
$$S_{ij} = \frac{1}{f} \int_{-f/2}^{f/2} \begin{pmatrix} \dagger (W) \cos^2 W & \frac{\dagger (W)}{2} \sin 2W \\ \frac{\dagger (W)}{2} \sin 2W & \frac{\dagger (W) \sin^2 W}{2} \end{pmatrix}$$

Passive Behavior: Linear Isotropic Elastic Material

$$\uparrow_{ij} = S_{ij} + \frac{E \in \mathbb{E}}{(1 - 2 \in \mathbb{E})(1 + \mathbb{E})} \mathsf{V}_{kk} \mathsf{U}_{ij} + \frac{E}{(1 - \mathbb{E})} \mathsf{V}_{ij}$$

Principal Stress and Stress Fiber Activation Coincide **Spatially and** Temporally

 Stiffness affects Contraction Development
 Increases in stiffness k yields increased transient and steady state force response

Multiple Activations

- One activations with slow decay
- Two activations with medium decay
- Four activations with fast decay
- Shows multiple activations more effective than single

Stress Fiber Activation

(a) Two

 activations
 versus (b) one
 activation at
 early and late
 times (t/)

External Force Response

- Stress fiber activated locally in response to constant external force
- (a) Early and (b) late time points shown

Stretch Response

 Cells exposed to unidirectional, cyclic stretch observed to realign CSK in opposite direction

Wei, Z., Deshpande, V.S., McMeeking, R.M., Evans, A.G., (2008) J Biomech Engr, 130:031009 24