Session 18

COMPUTATIONAL CONTINUUM MODELS
Models for Cell Mechanics

Computational approaches for cell mechanics

- Bridging the length scales

Continuum approaches

- Adherent cells
 - Elastic continua
 - Linear model (ELM)
 - Nonlinear model (ENL)
 - Viscoelastic continua
 - Maxwell model (VMM)
 - Generalized Maxwell model (VGM)
 - Power-law structural dampening model (VPL)
- Suspended cells
 - Liquid drop models
 - Biological continua models
 - Poroelastic model (BPE)
 - Poro-viscoelastic model (BPV)
 - Active continua
 - Bio-chemo-mechanical model (ABM)
 - Active poroelastic gels (APG)

- Multiscale models
 - Other models
 - Percolation models
 - Foam models
 - Tensegrity models (elastic and viscoelastic)
 - Cable network models
 - Monte-Carlo (MC) models
 - Stochastic motor-filament models
 - MC network models
 - Molecular dynamics (MD)
 - MD networks models
 - Mean field MD models

- Microscale approaches
Continuum Elastic Models

- A cell can be treated as a continuous material if the length scale of interest is larger than its microstructure.
- Rule of thumb – one or two orders of magnitude.
Constitutive Law

- A model’s prediction is only as good as its constitutive equations
 - Stress-strain relationship (Hooke’s Law)
 \[\sigma = E\varepsilon \]
 \[\sigma_{ij} = C_{ijkl}\varepsilon_{kl} \]
 - Predicts what are the strains \(\varepsilon \), but tells us nothing about microstructure!
- Coarse-graining approach – lower resolution of averaged properties
Goals of Modeling

- Deduction of cells mechanical properties
 - Know stress and strain of a cell, what is constitutive relationship?
 - MTC – magnetic force, bead displacement
 - Micropipette aspiration – vacuum pressure, aspiration length
 - AFM - cantilever force, indentation depth
Goals of Modeling

- Distinguish active from passive response
 - Active responses
 - Remodeling
 - Contraction
 - General mechanotransduction
 - Passive responses
 - Deformation
Finite element methods (FEM)

- Predicts the displacement, strain, and stress fields induced in a model
- Provide
 - Initial geometry
 - Material properties
 - Boundary conditions
- Solves equations that are not doable with analytical approaches
 - Discretize model into computational elements interconnected by nodes
 - Formulate “stiffness matrix” to find displacements

(Images courtesy of Sangyoon Han)
AFM Example

- Osteoblast stimulated with AFM tip showed calcium spikes
- Linear elastic isotropic material
 - $E = 10$ kPa
 - $\nu = 0.2-0.5$
- Geometric model
 - Symmetry
 - Length 15 μm
 - Thickness $t = 0.25 - 5$ μm
- Mesh
 - 8-node elements with dense meshing
- Boundary conditions
 - Fixed displacements
 - $u_z = 0$ on bottom
 - $u_x = 0$ on yz-surface
 - $u_y = 0$ on xz-surface
 - Loads
 - 1 nN load at (o,o,t)

Radial and Tangential Strain

- Radial strains largest on cell surface
- Tangential strain largest at indentation area
Vertical Strain and Deformation

- Vertical strain largest directly under indentation

- Deformation amplified 15x for visualization
Poisson’s Ratio

- Poisson effect is marginal
 - Radial strain (Err) varied 30%
 - Tangential strain (Ett) was drastic
 - Vertical strain (Ezz) varied 12%

Cell Height

- Cell thickness is significant
 - Cells < 2 μm had higher strains
 - Cells > 2 μm were similar

Active Continuum Models

- Incorporates activation of contractility and reorganization of cytoskeleton
Simple Activation Scheme

- Assume contractility is calcium dependent
 - Actin polymerization faster than depolymerization
 - Myosin assembly by Ca\(^{2+}\)/calmodulin/MLCK activation
 - Calcium concentration:

\[
C = \begin{cases}
0 & t < t_i \\
\exp \left(\frac{(t_i - t)}{\theta} \right) & t \geq t_i
\end{cases}
\]

- \(t_i\) is time at instance of activation
- \(\theta\) is decay time constant for intracellular Ca\(^{2+}\) pumps
Filament Assembly

- Degree of assembly η of filaments into the contractile apparatus structure

$$\frac{d\eta}{dt} = (1-\eta) C \frac{k_f}{\theta} - \eta \left(1 - \frac{\sigma}{\sigma_0}\right) \frac{k_b}{\theta}$$

$$0 \leq \eta \leq 1$$

- First term is assembly reaction
 - Negatively on assembly state η due to fewer free monomers
 - Positively on Ca$^{2+}$ concentration C that drives polymerization
 - Positively on forward rate constant k_f

- Second term is disassembly reaction
 - Positively on assembly state η
 - Negatively on ratio of tension to isometric tension σ/σ_0 that holds filaments together
 - Positively on backward rate constant k_b
Muscle cannot change its length instantly due to actin-myosin dynamics

Partly explained by inertia of weight

Main cause is isotonic contraction produces less force than isometric, which is zero velocity and $T = T_0$.

Hill’s Equation

$$(v + b)(T + a) = b(T_0 + a)$$

$$v_{\text{max}} = bT_0 / a$$
Active strain rate is related to the stress by simplification of Hill’s equation

\[
\frac{\sigma}{\eta \sigma_{max}} = \begin{cases}
0 & \frac{\varepsilon}{\varepsilon_0} < -\frac{\eta}{k_v} \\
1 + \frac{k_v}{\eta} \frac{\varepsilon}{\varepsilon_0} & -\frac{\eta}{k_v} \leq \frac{\varepsilon}{\varepsilon_0} \leq 0 \\
1 & \frac{\varepsilon}{\varepsilon_0} > 0
\end{cases}
\]

Relative Stress (\(\sigma / \sigma_{max}\))

Relative Strain Rate ((d\(\varepsilon\)/dt) / (d\(\varepsilon_0\)/dt))
Linear Elastic Constitutive Relationship

- **Active Behavior:** Strain rate and Average stress as vector & tensor

\[\varepsilon = \varepsilon_{11} \cos^2 \phi + \varepsilon_{22} \sin^2 \phi + \varepsilon_{12} \sin 2\phi \]

\[S_{ij} = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} \begin{bmatrix} \sigma(\phi) \cos^2 \phi & \frac{\sigma(\phi)}{2} \sin 2\phi \\ \frac{\sigma(\phi)}{2} \sin 2\phi & \sigma(\phi) \sin^2 \phi \end{bmatrix} \]

- **Passive Behavior:** Linear Isotropic Elastic Material

\[\sigma_{ij} = S_{ij} + \frac{E v}{(1-2v)(1+v)} \varepsilon_{kk} \delta_{ij} + \frac{E}{1-\nu} \varepsilon_{ij} \]
Principal Stress and Stress Fiber Activation Coincide Spatially and Temporally
Stiffness affects Contraction Development

- Increases in stiffness k yields increased transient and steady state force response.
Multiple Activations

- One activations with slow decay
- Two activations with medium decay
- Four activations with fast decay
- Shows multiple activations more effective than single
Stress Fiber Activation

(a) Two activations versus (b) one activation at early and late times (t/θ)
External Force Response

- Stress fiber activated locally in response to constant external force
- (a) Early and (b) late time points shown
Cells exposed to unidirectional, cyclic stretch observed to realign CSK in opposite direction.