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COM PUTATIONAL
CONTINUUM MODELS



Models for Cell Mechanics

Computational approaches for cell mechanics

l Bridging the length scales l

Continuum approaches *  Multiscale models < Microscale approaches ——

|

Suspended cells

l

Liquid drop models

! ! !

Elastic continua Viscoelastic continua Biphasic continua Active continua
= Linear model (ELM) * Maxwell model (VMM) * Porpelastic model (BPE) ¢ Bio-chemo-mechanical
= Nonlinear model (ENL) * (Generalized Maxwell model (VGM) * Porp-viscoelastic model (BPY) model (ABM)
* Power-law structural dampening » Active poroelastic gels (APG)
model (VPL)

! } !

Other models Monte-Carlo (MC) models Molecular dynamics (MD)
= Percolation models = Stochastic motor-filament models e MD networks models
» Foam models o MC network models = Mean field MD models
* Tensegrity models

(elastic and viscoelastic)

Cable network models
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Continuum Elastic Models

A cell can be treated as a continuous material if

length scale of interest is larger than its
microstructure

Rule of thumb — one or two orders of magnitude

DNA  Microtubule Red blood cell Chromosome DNA length
width  diameter diameter length (human cell)

| 1, | |

109 10-7 103 1073
Length (m)

Proteins Cell Tissues
cytoplasmic filaments

Micro/nanostructural modelling Continuum modelling




Constitutive Law

A model’s prediction is only as good as its
constitutive equations

Stress-strain relationship (Hooke's Law)
B Ec
Sij = Cijklekl

Predicts what are the strainsn €, but tells us nothing
about microstructure!

Coarse-graining approach — lower resolution of
averaged properties



Goals of Modeling

Deduction of cells mechanical properties

Know stress and strain of a cell, what is constitutive
relationship?
* MTC - magnetic force, bead displacement

* Micropipette aspiration — vacuum pressure, aspiration
length

* AFM - cantilever force, indentation depth



Goals of Modeling

Distinguish active from passive response

Active responses

* Remodeling

+ Contraction

* General mechanotransduction
Passive responses

+ Deformation



Finite element methods (FEM)

Predicts the displacement, strain, and stress fields

induced in a model

Provide
Initial geometry
Material properties
Boundary conditions

Solves equations t
are not doable wit
analytical approac
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Discretize model into computational elements
interconnected by nodes

Formulate “stiffness matrix” to find displacements



AFM Example

Osteoblast stimulated with AFM tip showed calcium spikes
Linear elastic isotropic material
E =10 kPa
V =0.2-0.5
Geometric model
Symmetry
Length 15 um
Thickness t = 0.25 - 5 Um
Mesh

8-node elements with dense meshing

Boundary conditions
Fixed displacements
* U,=o0o0n bottom
* U= o0on yz-surface
* U= o0onxz-surface
Loads
* 1nNload at (0,0,1)

G.T. Charras, P.P. Lehenkari, M.A. Horton (2001) Ultramicroscopy, 86:85-95 g




Radial and Tangential Strain
Radial strains largest on cell surface

Tangential strain largest at indentation area

G.T. Charras, P.P. Lehenkari, M.A. Horton (2001) Ultramicroscopy, 86:85-95



Vertical Strain and Deformation

Vertical strain largest directly under indentation

Deformation amplified 15x for visualization

G.T. Charras, P.P. Lehenkari, M.A. Horton (2001) Ultramicroscopy, 86:85-95 1,
s



Poisson’s Ratio

Poisson effect is marginal
Radial strain (Err) varied 30%
Tangential strain (Ett) was drastic
Vertical strain (Ezz) varied 12%

0.02
% r _E”- |T|in

e ETT MAax

= = Ett min

Ett max

Poisson Ratio

G.T. Charras, P.P. Lehenkari, M.A. Horton (2001) Ultramicroscopy, 86:85-95 1,




Cell Height

Cell thickness is significant

Cells < 2 um had higher strains
Cells > 2 um were similar

Ol OE O e e s woe = = O R m o w = =

Err min
= Err max
= = Eft min
w— it max
—Ezz min
— Ezz max

1 2 3 4

Thickness (in micrometers)

G.T. Charras, P.P. Lehenkari, M.A. Horton (2001) Ultramicroscopy, 86:85-95 1,




Active Continuum Models

Incorporates activation of contractility and
reorganization of cytoskeleton
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Average stress
fibre activation




Simple Activation Scheme

Assume contractility is calcium dependent
Actin polymerization faster than depolymerization
Myosin assembly by Ca2*/calmodulin/MLCK activation
Calcium concentration:

0 ="t
- exp| (t —t)/q | txt

t; is time at instance of activation
0 is decay time constant for intracellular Ca2* pumps
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Filament Assembly

Degree of assembly | of filaments into the contractile
apparatus structure

k
@:(1—h)c—f—h (1— e ]kb
at q S,/9

0<h <1

First term is assembly reaction

* Negatively on assembly state n due to fewer free monomers
*+ Positively on Ca? concentration C that drives polymerization
* Positively on forward rate constant k;

Second term is disassembly reaction

* Positively on assembly state n

+ Negatively on ratio of tension to isometric tension s/s that holds
filaments together

+ Positively on backward rate constant k;,
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Force-Velocity Dynamics

Muscle cannot change its
length instantly due to
actin-myosin dynamics
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Partly explained by inertia v
of weight E
Main cause is isotonic &
contraction produces less 0.3 0.0 0.5

force than isometric, which
is zero velocityand T =T..

Relative velocity (V/Vmax)
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Stress-Strain Rate Relationship

Active strain rate is related to the stress by
simplification of Hill's equation
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Relative Strain Rate ((d[l/dt) / (d[}/dt))




Linear Elastic Constitutive Relationship

Active Behavior: Strain rate and Average stress as
vector & tensor

- 2 = 2 e
s sin'f +e,anX

jp/Z
p/2

2
s (f ) cos’f (Zf)sm2f

SO gnar s ()sn’s
| 2 /

Passive Behavior: Linear Isotropic Elastic Material
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Principal Stress
and Stress Fiber
Activation
Coincide
Spatially and N
Temporally

|| 1

19




Stiffness affects Contraction Development

Increases in stiffness k yields increased transient
and steady state force response
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Multiple Activations

One activations |
with slow decay '

Two activations
with medium
decay

Four activations
with fast decay

Shows multiple
activations more
effective than
single
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\ single prolonged activation

four activation signals

force (F)

four activation siznals

- single prolonged activation
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Stress Fiber Activation

(a) Two
activations
versus (b) one
activation at
early and late
times (t/0)
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External Force Response

Stress fiber activated locally in response to
constant external force

(a) Early and (b) late time points shown
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Stretch Response

Cells exposed to
unidirectional, cyclic
stretch observed to
realign CSK in
opposite direction

3% Stretch

Cyclic Uniaxial Stretch

1% 3% 5% 7.5% 10%
Static Stretch Siretch Stretch Stretch Stretch
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<0.001 <0.001 <0.001

Time, t (hr)

Wei, Z., Deshpande, V.S., McMeeking, R.M., Evans, A.G., (2008) J Biomech Engr, 130:031009 ,,




