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 Three fundamental cytoskeletal filaments 

Actin Microtubules (MT)    Intermediate Filaments (IF) 
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 Random coiling of polymer 
filaments  

 Cross-linking between 
filaments (black dots) 

 Entropic Spring 

 Stretching force cause order in 
filaments 

 Reduces entropy 

 Generates of heat 

 

 

F F 
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 Consider the 1st Law of Thermodynamics 

ΔU = Q + W  

 ΔU: change in internal energy (strain energy) 

 Q: heat added to system 

 W: work done on system 

 

 For reversible system, heat added is equal to 
temperature of system times change in entropy 

Q = T ΔU 
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 Consider the 1st Law of Thermodynamics 

ΔU = Q + W  

Q = T ΔS 

 

 Work done on system  is equal to applied force 
times change in length of system 

W = F ΔL 
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 Consider the 1st Law of Thermodynamics 

ΔU = Q + W  

Q = T ΔS 

W = F ΔL 

 ΔU = T ΔS + F ΔL 

 

 Stretching rubber rotates its bonds, does not 
stretch bonds… 

 0 = T ΔS + F ΔL 
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 Rearranging… 

F ΔL = - T ΔS 

 As rubber extends under force F = 1, e.g. ΔL = 2 

2 = - T ΔS 
 RHS must be positive 

 But, temperature cannot be negative (T in Kelvins) 

 Thus, change in entropy must be negative (-ΔS) 

 As a consequence, stretched rubber gives off heat  

Q = T ΔS 

 (-Q) = T (-ΔS) 
(What if you add heat back in?) 
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 Consider four-segment polymer 

 

 

 There are 16 unique configuration states 
 S  ln(16) = 2.77 

 

 There is tension applied such that there cannot be 
zero separation from end-to-end 
 S  ln(10) = 2.30 

 

 Therefore, tension reduces entropy 
 

(2) 

(2) 

(2) 
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 Entropic stiffness is proportional to temperature 

demo1.mov
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 Simply, filaments in thermal equilibrium in a 
liquid solution will appear… 
 Straight over lengths < lp 

 Contorted randomly over lengths >  lp 

 

 

 

 

 

 In vitro solution measurements: 
 DNA: 50 nm 

 F-actin: 17 mm 

 Microtubule: 1 mm 

Hi  lp Lo  lp 
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 Formally,  

 

 where 

   k = EYI is bending stiffness 

   k = 1.38 x 10-23 J/K is Boltzmann constant 

   T is temperature in K 
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 Applied forces lead to moment  M in rod  

 M acts to deforms straight shape to curved shape 

 Strain Energy    

 

 

 Infinitesimal Strain Energy   

 

 

 By Hooke’s Law   
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 Interior bending lengths 

 

 

 

 

 Strain 
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Length along neutral axis 

Length along dashed line 
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 Strain energy per unit length 

2

2

2

2

2

2

1

2

1

2

1

2

1

2

Y

A

Y

A

Y y

x
E E dA

E
x dA

E I

r

r

r

k

r















15 

 Energy can be described as  

 

 

 

 Radius of curvature  
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 We can express as  

 

 

 

 Or 
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 Tension to extend a filament measured by 
amount of extension along a line 

 

 

 

 Extension response dominated by entropy 

 At any finite temperature, there is contraction 
due to thermal fluctuations that makes polymer 
deviate from straight line 

l 
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 Semiflexible chain stretched by tension t  

 Energy of bending Hbend 

 Energy of contraction against t 
 

 Derive the “shortening” in the filament: 
 Length is unchanged by kT, t 
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 Strain energy from stretching 

 

 

 

 Thus, total energy 

 

 

 

 
 

 Note, there exists version for transverse motion 
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 It can be shown … 

 Transverse spring constant 

 

 

 Longitudinal spring constant 

 

 

 

 For l < lp , longitudinal stiffness is lower than 
transverse   
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 It can be shown  

 Considering the balance with thermal energy 

 Adding transverse motion direction, and 

 Utilizing statistical mechanics concepts 

 

 

 

with dimensionless force 
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 Non-linear behavior 

 Linear at small force 

 Strain stiffening at large forces 
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 Solution of polymers have mesh size dimension x  

 Typical spacing between filaments  

 Estimated by volume fraction y  

 For rigid rods (lengths < lp)   

 

 

 

 Accounting for thermal fluctuations  
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 It can be shown that for entropy only 

 

 
 

 Temperature dependence 

 Filament density dependence 

 2 7/5
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 High frequency testing 

 Filaments not able to relax from high bending modes 

 Increased stiffness from less compliant filaments 

 

 

 

 r  is polymer concentration, z  is hydrodynamic drag (per 
unit length) , h  is viscosity 
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 Consider cross-linking distance lc  

 

 

 

 

 Deformation types 

 Affine network models: uniform rotation or stretching 

 Non-affine models: macroscopic strains vary from one 
region to another 
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F 
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 Affine, thermal-entropic (AT) 
 

 

 Modulus depends strongly on x-linking  
 

 Non-affine (NA) 
 Low poly conc, high x-linking (low lc) 

 
 

 

 Affine, mechanical (AM) 

 Filament segments (small lc) behave as rigid rods with modulus m 
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