

Microscopic Structural Comparisons

- Cellular CSK resembles natural and synthetic materials
 - Felt
 - Paper
 - Cotton
 - NASA Shuttle Tile
- Components
 - Actin
 - IF

Foam Mechanics

- Gibson & Ashbury (1997) "Cellular Solids: Structure and Properties" Cambridge University Press
- Types
 - Plastic Foams
 - Metallic Foams
 - Ceramic Foams

Structure Classes

Honeycomb Open Cell Closed Cell

Relative Density

• Ratio ($\rho^*/\rho_{\rm s}$)

- * ho^* is overall foam density
- * $\rho_{\rm s}$ is constituent's bulk density, e.g. F-actin

$$\left(\frac{\rho^*}{\rho_s}\right) \propto \frac{A_t}{A_l}$$
$$\left(\frac{\rho^*}{\rho_s}\right) = C_0 \frac{t^2}{l^2}$$

• C_0 is constant (\approx 1) that depends on foam cell shape

Moment of Inertia

- (a/k/a Second Moment of Area)
- Geometric resistance of a beam to bending

Young's Modulus Linear Beam Theory

Pinned-pinned, three-point bending

$$\delta = \frac{F}{48E_sI}l^3$$

• E_s is modulus of elasticity for beam (F-actin \approx GPa)

Young's Modulus • Stress remote from the cell (σ) is related to force $F \propto \sigma l^2$ Strain (ε) related to beam displacement $\varepsilon \propto \delta/l$ By Hooke's law, the effective modulus is

$$c = \frac{-\varepsilon}{\varepsilon}$$

$$\propto \frac{F}{l^2} \frac{E_s I}{F l^2}$$

$$\propto \frac{E_s I}{l^4}$$

Young's Modulus

Using relative density and moment of inertia

C₁ =1 for open cell foams

 Valid for small strains: Large compressive load, side struts will buckle

Shear ModulusSimilar derivation

Displacement

$$\delta = \frac{F}{48E_sI}l^3$$

Stress

 $au = F/l^2$

Strain

 $\gamma = \delta/l$

Shear Modulus Thus, as before

$$G^* = \frac{\tau}{\gamma}$$
$$\propto \frac{E_s I}{l^4}$$
$$\propto E_s \frac{t^4}{l^4}$$
$$\frac{G^*}{E_s} = C_2 \left(\frac{\rho^*}{\rho_s}\right)^2$$

• $C_2 = 3/8$ for open cell foams

Poisson's Ratio For linear elastic, isotropic material

$$G = \frac{E}{2(1-\nu)}$$

Using this for foams

$$v^* = \frac{E^*}{2G^*} - 1$$
$$= \frac{C_1}{2C_2} - 1 = C_2$$

x=0.89 y=1.33

• $C_3 = 1/3$ for open cell foams

• Elastic collapse occurs when $F_{crit} \propto \frac{\pi^2 E_s I}{r^2}$

Stress at elastic collapse

 $\sigma_{el}^* \propto rac{F_{crit}}{I^2}$

 $\propto \frac{E_s l}{r^4}$

 $\frac{\sigma_{el}^*}{E_s} = C_4 \left(\frac{\rho^*}{\rho_s}\right)^2$

C₄ =0.05 for open cell foams

Bone

Structure

- Cortical Bone laminate outside
- Trabecular Bone foam inside

TrabecularElastic

CollapseDensify

Table 9.4. Summary of mean compressive properties of human trabecular bone from different anatomic locations. Values in parentheses are standard deviations. Femur specimens were pooled from both the proximal and distal femur. The specimens from the tibia, distal femur, and spine were tested in the longitudinal (inferior-superior) direction. The proximal femur specimens were oriented along the neck of the femur. Adapted from Keaveny [11]. Copyright 2001 from *Bone Mechanics Handbook* by Cowin. Reproduced by permission of Routledge/Taylor & Francis Group, LLC.

Anatomic site	Relative density	Modulus (MPa)	Ultimate stress (MPa)	Ultimate strain (%)
Proximal tibia	0.16 (0.056)	445 (257)	5.33 (2.93)	2.02 (0.43)
Femur	0.28 (0.089)	389 (270)	7.36 (4.00)	Not reported
Lumbar spine	0.094 (0.022)	291 (113)	2.23 (0.95)	1.45 (0.33)

Actin Foams • $\rho_s = 700-800 \text{ mg/ml}$ • $\rho^* = 10-20 \text{ mg/ml}$

$$\left(\frac{\rho^*}{\rho_s}\right) = 1 - 3\%$$

• $E_s = 1.4 \text{ GPa}$

 $E^* = 20 - 40$ MPa $G^* = 20 - 40$ MPa

That's a bit stiff!

Intermediate filament structure Shear flow induces IF strain in network

Helmke, et al., (2003) Biophys J, 84(4):2691

Additional Improvements?

- Make the model match the data
- Get better filament measurements (IF, maybe actin)
- Scalable issues?
- Node mechanics
- Buckling effects
- Over discretization by including actin binding proteins or other protein interactions