Session 1

ANALYSIS AND MODELING OF CELL MECHANICS

Syllabus

Prof. Nate Sniadecki

- Website:
 - http://faculty.washington.edu/nsniadec/ME599/W13/
- Selected readings
- Topics
 - Introduction to Cell Biology
 - Analysis of Cell Mechanics
 - Cell Mechanics Modeling
 - Measuring Cell Forces
 - Mechanotransduction
- Grading
 - Homework: 50%
 - Project: 50%
 - No Final

Date	Day	#	Торіс
7-Jan	М	1	Introductory - Analysis and Modeling of Cell Mechanics
9-Jan	W	2	Introductory - Building Blocks
11-Jan	F	3	Introductory - Nucleus
14-Jan	М	4	Introductory - Cytoskeleton
16-Jan	W	4	Introductory - Cytoskeleton
18-Jan	F	5	Introductory - Extracellular Matrix
21-Jan	М		No Class (MLK Day)
23-Jan	W	6	Cell Mechanical Analysis - Microneedles
25-Jan	F	7	Cell Mechanical Analysis - Micropipette Aspiration
28-Jan	М	8	Cell Mechanical Analysis - Atomic Force Microscopy
30-Jan	W	9	Cell Mechanical Analysis - Microrheology
1-Feb	F		No Class
4-Feb	М		No Class
6-Feb	W		No Class
8-Feb	F	10	Cell Mechanical Analysis - Magnetic Twisting Cytometry
11-Feb	М	11	Cell Mechanical Analysis - Optical Tweezers
13-Feb	W	12	Modeling Cell Mechanics - Lumped Parameter Viscoelastic Models
15-Feb	F	13	Modeling Cell Mechanics - Pure Lipid systems
18-Feb	М	14	Modeling Cell Mechanics - Tensegrity
20-Feb	W	15	Modeling Cell Mechanics - Foams
22-Feb	F	16	Modeling Cell Mechanics - Polymer Networks
25-Feb	М	17	Modeling Cell Mechanics - Soft Glassy Material
27-Feb	W	18	Modeling Cell Mechanics - Computational Models
1-Mar	F	19	Cellular Forces - Adhesions and Traction
4-Mar	М	20	Cellular Forces - Traction Force Microscopy
6-Mar	W	21	Cellular Forces - MEMS Tools
8-Mar	F	22	Mechanotransduction - Introduction & Examples
11-Mar	М	23	Mechanotransduction - Whole Cell Analysis
13-Mar	W	24	Mechanotransduction - Nanoscale Analysis
15-Mar	F	25	Mechanotransduction - Mechanisms
18-Mar	М		Final Project Report Due

INTRODUCTIONS

Robert Hooke

Micrographia (1665)

http://archive.nlm.nih.gov/proj/ttp/flash/hooke/hooke.html

What are cells?

 The basic functional units of life (composed of numerous components with distinct mechanical characteristics)

Origins:

The Context of Cells

10⁻⁴ - 10⁻⁶ m

10⁻⁸ - 10⁻¹⁰ M

Cells – Tissue	Grains – Materials
Animate	Inanimate
Basic Unit of Living Things	Basic Unit of Metal and Ceramics
Composed of Proteins	Composed of Atoms
Defines structure-function of tissue	Defines structure-strength of material
Sensitive to temperature, radiation, water, pH, nutrients, pressure, ionic strength, osmolarity, hormones, etc.	Sensitive to temperature, radiation, corrosion, loading

Organelles :: Subsystems

What is Cell Mechanics?

 "The subject of cell mechanics encompasses a wide range of essential cellular processes, ranging from macroscopic events like the maintenance of cell shape, cell motility, adhesion, and deformation to microscopic events such as how cells sense mechanical signals and transduce them into a cascade of biochemical signals ultimately leading to a host of biological responses."

-- Mofrad & Kamm

Cell Mechanical Analysis

- Diameter: 30-50 μm (~3 μm for bacteria)
- Mass: 2-6 x 10⁻⁸ g
- Young's modulus: 1 10⁵ Pa (CSK: ~ 10⁻⁹ Pa)

Modeling Cell Mechanics

- Spectrin network of RBC
- Tetramers of neo-Hookean springs

Role of Cell Mechanics

Conflicting mindsets:

- Mechanics treats cells as a material with properties that are time invariant
- Mechanotransduction illustrates that cells are living, changing entities that alter themselves in response to mechanical stimuli

Conceptual Framework:

- The mechanics of cells and their altered biological functions are intrinsically linked.
- What are the central structure-function relationships?

Maintenance of Cell Shape

Cell function follows form

Cell types:

- motor neuron
- osteocyte
- hair cell
- adipocyte
- rods and cones
- endothelials
- skeletal muscle
- smooth muscle
- RBC
- lymphocyte
- epithelial (separated)
- fibroblasts
- sperm and egg cells

(Drawn to scale)

Cell Migration

10 µm

Mechanosensing

- Mechanosensation: Hair cells, touch-sensitive sensory neurons
- Mechanotransduction: mechanical stimuli that cause a biochemical response

Mechanics of Disease Tissue remodeling in response to stress

Nature Reviews | Molecular Cell Biology

Active Cell Contraction

Tissue Engineering

MorphogenesisCell Shape & Migration

С

Con the second

