

Atoms

- Six basic elements
 Hydrogen (H), Carbon (C), Nitrogen (N), Oxygen (O), Phosphorous (P), Sulfur (S)
- Valence electrons determine the bonding
- Electronegativity determines the polarity
- Composition is similar between living organisms

Atoms	Н	С	Ν	0	Р	S
Valency	1	4	5	6	5	6
Electronegativity	2.1	2.5	3.0	3.5	2.1	2.5
H. Sapien (%)	9.3	19.4	0.8	62.8	0.6	0.6
Bacteria (%)	9.9	12.14	3.0	73.7	0.6	0.3
Earth (%)	0.9	0.2	0.9	50	0.12	0.12

Proteins

- Individual amino acids are translated into long chains called polypeptides
- Peptide bond: carboxyl + amino \rightarrow CO–NH + H₂O

- Each amino acid in a polypeptide is called a residue (R)
- Residue sequence read from N-terminal to C-terminal
- Final sequence will "fold up" into a 3-dimensional structure
- Substitution of just one residue can change a protein's structure-function relationship

Amino Acid Sequence

MCEEETTALVCDNGSGLCKAG FAGDDAPRAVFPSIVGRPRHQ GVMVGMGQDSYVGDEAQSK RGILTLKYPIEHGIITNWDDME KIWHHSFYNELRVAPEEHPTLL TEAPINPKANREKMTQIMFET FNVPAMYVAIQAVLSLYASGRT TGIVLDSGDGVTHNVPIYEGYA LPHAIMRLDLAGRDLTDYLMKI LTERGYSFVTTAEREIVRDIKEK LCYVALDFENEMATAASSSSL EKSYELPDGQVITIGNERFRCP ETLFQPSFIGMESAGIHETTYN SIMKCDIDIRKDLYANNVLSGG TTMYPGIADRMQKEITALAPS TMKIKIIAPPERKYSVWIGGSIL ASLSTFQQMWISKPEYDEAGP

Protein Folding

- In aqueous cytoplasm, hydrophobic résidues form the inner core of the protein
- Denaturing is a loss of protein structure through solvents, salts, pH, or heat

Protein Structure

- Primary amino acid sequence
- Secondary sub-structures through hydrogen bonds
 - Alpha helix
 - Beta sheet
- Tertiary overall shape of a single protein unit
- Quaternary union of more than one protein units

