Session 24 NANOSCALE APPROACHES

Nanoscale Mechanotransduction

Atomic Force Microscopy

Optical Tweezers

Adhesions form on Microbeads

- Beads coated with fibronectin fragment
 - Domains 7-10
 - RGD sequence located on 10
- Mature focal adhesions detected by vinculin immunofluorescence
 10 and 6 µm beads permit FA growth

Ligand and area define FA formation

Ligand

- Fibronectin (integrin-binding)
- Vitronectin (integrin-binding)
- Concanavalin A (non-integrinbinding)
- Contact area
 - Reduced FA growth for 1 μm beads
 - Critical area needed for adhesion formation
 - > 0.1 µm² contact area

FAs need Internal Force

- ML-7 inhibits myosin light chain kinase (MLCK)
 - Myosin assembly inhibited
- Integrin β1 and vinculin
 - Co-localization in untreated cell
 - Myosin inhibition permits β1–FN binding but not accumulation of vinculin

a

6 um

External Force induces FA growth

- Retrograde movement of beads on lamellipodia extensions
- Optical trap used to constrain 1 μm bead
- GFP-vinculin shows induced FA growth with trap force
- GFP-vinculin and antibody signal match

Spatiotemporal Response

- Punctate structure forms first
- Rearward motion causes vinculin accumulation on side of trap force
- Further pulling by cell shows vinculin diffusely surrounds bead

Intensity correlates with Force

- FA intensity rises when bead moves from trap center
- Vinculin dissipation causes loss of retro-grade force
 - Bead pulled back to center of trap (t=81 s)

Reinforcement Assay of Cell Force

- Beads contained by trap have weak FAs and cellforces
- Escaping the trap indicates strong FAs and force

 Strong forces

- FN
- × VN
- X Con A

Physics of FA Mechanotransduction

- Small beads move under retrograde flow
- Large beads sufficient for FA growth by balanced internal forces
- External force can induce FA maturation

10

A possible biotrigger...

- Src known to regulate integrin-CSK interactions
- Ligand-activated β₃ integrin phosphorylates Src
- FRET-reporter for active Src used with optical trap

300 pN Force causes Src activation Directional and long-wave propagation of Src

12

CSK needed for long-range signaling Force transmission along filaments causes Src mechano-activation at distant sites

Or, Src activation starts actin polymerization waves

Recruit and activate more Src at F-actin tips

Ca2+ spikes with AFM force

Intercellular propagation in osteoblasts through gap junctions

 Response dependent on stretch-ion channels and MT network

QUESTIONS?