Session 19 SILICONE WRINKLING MEMBRANES

Traction Forces

- Previously Paradigm
 - First cells cultured inside plasma clots (a/k/a fibrin gels)

- Cell-gel distortions were "side-effect" of propulsion forces
- Sought to develop flexible gels to map cell forces
- Difficult to get funding

Flexible Substrata

- Particle movement
 - Carbon black particles (soot) mixed in thin layer of plasma clot
 - Centripetal movement of carbon particles
 - Difficult to maintain uniform Young's modulus
 - Many grant applications rejected
- Cross-linked silicone fluids
 - Flame-cured flexible skin on silicone fluid covered coverslip glass
 - Silicone impervious to hydration/dehydration effects
 - Received tenure on year before Science break-through

Wrinkling

- Compression folds underneath cell
- Tension wrinkles radiate outward
- UV treatment

 increases wrinkling
 by weakening
 cross-links in
 silicone film

Wrinkling Video

Calibration

- Pulled glass needle
 - Spring constant of needle calibrated with hanging weights
 - Pushing force applied to fixed cells on sheet
 - Force causes reversible wrinkles
 - Linear relationship between wrinkle length and applied force

Confirmed Rho/Myosin involvement

LPA

untreated

Chrzanowska-Wodnicka M., et al. (1996) J Cell Biol, 133(6):1403

serum free, LPA + KT5926

serum recovery

activates

inhibits myosin **ATPase** activity

KT5926 inhibits **MLCK**

Calmodulin/Myosin Involvement

- Transfect cells with cDNA constructs
- Caldesmon inhibits calmodulin, actin, and myosin activity
- CD445B is truncated caldesmon without actin, calmodulin, & myosin binding sites
- GFP construct used as control

Myofibroblast Differentiation

- Fibroblasts
 expressing αsmooth muscle
 actin generate
 large traction
 forces
- Contractile differentiation important for wound healing

Hinz, B., *et al*. (2001) *Mol Biol Cell*, 12:2730

Impact of Harris' work

- Direct observation of small, weak forces not possible before (and strange to some)
- Technique is not easily reproduced
- Not a direct quantitative approach
- Cell force techniques improve on reproducibility and quantification

(MBOC) Figure 19-50. The shaping of the extracellular matrix by cells. This micrograph shows a region between two pieces of embryonic chick heart (rich in fibroblasts as well as heart muscle cells) that were cultured on a collagen gel for 4 days. A dense tract of aligned collagen fibers has formed between the explants, presumably as a result of the fibroblasts in the explants tugging on the collagen. (From D. Stopak and A.K. Harris, *Dev. Biol.* 90:383–398, 1982)