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� A cell can be treated as a continuous material if 

length scale of interest is larger than its 

microstructure 

� Rule of thumb – one or two orders of magnitude

3



� A model’s prediction is only as good as its 
constitutive equations 
� Stress-strain relationship (Hooke’s Law)
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� Predicts what are the strains ε, but tells us nothing 
about microstructure!

� Coarse-graining approach – lower resolution of 
averaged properties
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� Deduction of cells mechanical properties

� Know stress and strain of a cell, what is constitutive 

relationship?

� MTC – magnetic force, bead displacement

� Micropipette aspiration – vacuum pressure, aspiration 
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� Micropipette aspiration – vacuum pressure, aspiration 

length

� AFM  - cantilever force, indentation depth



� Distinguish active from passive response

� Active responses

� Remodeling

� Contraction 

� General mechanotransduction
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� General mechanotransduction

� Passive responses

� Deformation



� Predicts the displacement, strain, and stress fields 
induced in a model

� Provide 
� Initial geometry

� Material properties

Boundary conditions
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� Boundary conditions

� Solves equations that
are not doable with 
analytical approaches
� Discretize model into computational elements 

interconnected by nodes

� Formulate “stiffness matrix” to find displacements

(Courtesy of Sangyoon Han)



� Osteoblast stimulated with AFM tip showed calcium spikes 

� Linear elastic isotropic material
� E = 10 kPa

� ν = 0.2-0.5

� Geometric model
� Symmetry

� Length 15 µm 

� Thickness t = 0.25 - 5 µm
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� Thickness t = 0.25 - 5 µm

� Mesh 
� 8-node elements with dense meshing

� Boundary conditions
� Fixed displacements

� uz= 0 on bottom
� ux= 0 on yz-surface
� uy= 0 on xz-surface

� Loads
� 1 nN load at (0,0,t)

G.T. Charras, P.P. Lehenkari, M.A. Horton (2001) Ultramicroscopy, 86:85-95
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� Radial strains largest on cell surface
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� Tangential strain largest at indentation area

G.T. Charras, P.P. Lehenkari, M.A. Horton (2001) Ultramicroscopy, 86:85-95
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� Vertical strain largest directly under indentation
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� Deformation amplified 15x for visualization

G.T. Charras, P.P. Lehenkari, M.A. Horton (2001) Ultramicroscopy, 86:85-95



� Poisson effect is marginal

� Radial strain (Err) varied 30%

� Tangential strain (Ett) was drastic

� Vertical strain (Ezz) varied 12%
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� Cell thickness is significant

� Cells < 2 µm had higher strains

� Cells > 2 µm were similar

12G.T. Charras, P.P. Lehenkari, M.A. Horton (2001) Ultramicroscopy, 86:85-95



� Incorporates activation of contractility and 

reorganization of cytoskeleton
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� Assume contractility is calcium dependent
� Actin polymerization faster than depolymerization

� Myosin assembly by Ca2+/calmodulin/MLCK activation

� Calcium concentration:
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� ti is time at instance of activation

� θ is decay time constant for intracellular Ca2+ pumps
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� Degree of assembly η of filaments into the contractile 
apparatus structure
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� First term is assembly reaction
� Negatively on assembly state η due to fewer free monomers

� Positively on Ca2  concentration C that drives polymerization

� Positively on forward rate constant kf

� Second term is disassembly reaction
� Positively on assembly state η 
� Negatively on ratio of tension to isometric tension σ/σ0 that holds 

filaments together

� Positively on backward rate constant kb

0 1η≤ ≤



� Muscle cannot change its 

length instantly due to 

actin-myosin dynamics

Hill’s Equation
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� Partly explained by inertia 
of weight

� Main cause is isotonic 
contraction produces less 
force than isometric, which 
is zero velocity and T = T0.
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� Active strain rate is related to the stress by 

simplification of Hill’s equation
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� Active Behavior: Strain rate and Average stress as 

vector & tensor
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� Passive Behavior: Linear Isotropic Elastic Material

( )( ) ( )1 2 1 1
ij ij kk ij ij

E E
S

ν
σ ε δ ε

ν ν ν
= + +

− + −

/2

/2
2

( )cos sin 2
1 2

( )
sin 2 ( )sin

2

ij
S

π

π

σ φ φ φ

σ φπ
φ σ φ φ

−

 
=  

 
 
 

∫



19



� Increases in stiffness k yields increased transient 

and steady state force response
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� One activations 
with slow decay 

� Two activations 
with medium 
decay

Four activations 
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� Four activations 
with fast decay 

� Shows multiple 
activations more 
effective than 
single



� (a) Two 

activations 

versus (b) one 

activation at 

early and late 
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early and late 

times (t/θ)



� Stress fiber activated locally in response to 

constant external force 

� (a) Early and (b) late time points shown
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� Cells exposed to 

unidirectional, cyclic 

stretch observed to 

realign CSK in 

opposite direction
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opposite direction

Wei, Z., Deshpande, V.S., McMeeking, R.M., Evans, A.G., (2008) J Biomech Engr, 130:031009


