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A model for the contractility of cells is presented that accounts for the dynamic
reorganization of the cytoskeleton. It is motivated by three key biochemical processes:
(i) an activation signal that triggers actin polymerization and myosin phosphorylation,
(ii) the tension-dependent assembly of the actin and myosin into stress fibres,
and (iii) the cross-bridge cycling between the actin and the myosin filaments that
generates the tension. Simple relations are proposed to model these coupled phenomena
and a constitutive law developed for the activation and response of a single stress fibre.
This law is generalized to two- and three-dimensional cytoskeletal networks by
employing a homogenization analysis and a finite strain continuum model is developed.
The key features of the model are illustrated by considering: (i) a single stress fibre on a
series of supports and (ii) a two-dimensional square cell on four supports. The model is
shown to be capable of predicting a variety of key experimentally established
characteristics including: (i) the decrease of the forces generated by the cell with
increasing support compliance, (ii) the influence of cell shape and boundary conditions on
the development of structural anisotropy, and (iii) the high concentration of the stress
fibres both at the focal adhesions and at the sites of localized applied tension. Moreover,
consistent with the experimental findings, the model predicts that multiple activation
signals are more effective at developing stress fibres than a single prolonged signal.
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1. Introduction

Most living cells sense, support or generate forces. For example, skeletal and
heart muscle cells generate contractile forces on excitation, thereby performing
many essential body functions. Endothelial cells can recognize the magnitude
and the mode (steady or pulsating) of shear flows and respond accordingly, either
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maintaining a healthy endothelium or leading to vascular diseases. These and
many other examples (see Bao & Suresh 2003) indicate that mechanical forces
are central to the functioning of living cells. To develop models of the functional
performance of a cell, it is not sufficient to just address its passive characteristics
(except in a few simple cases; Hochmuth 1987). Instead, as discussed by Wang
et al. (1993), force generation by the cytoskeleton must be included. The relevant
forces have been measured using a succession of approaches. The first used
continuous polymer substrates to examine the deformations (Harris et al. 1981).
Later methods improved the resolution by (i) increasing the compliance of the
substrates (Burton & Taylor 1997) and (ii) micro-patterning islands to facilitate
measurements in areas as small as single focal adhesions (Balaban et al. 2001).
More recently, Tan et al. (2003) introduced a method in which cells are laid on a
bed of micro-needles: the independent deflections of each of these needles yield
the forces exerted by the cell.

While significant experimental progress has been made to measure the forces
generated by cells, interpretation of these experimental measurements poses a
particular challenge. The reason is that a significant proportion of the forces are
generated/supported by the cell cytoskeleton, which undergoes remodelling or
reorganization in response to mechanical perturbations. This raises the
fundamental paradox: how can we measure the intrinsic mechanical properties
of living cells if they react to our measurement tools. Thus, unlike conventional
engineering materials, experiments alone provide few of the intrinsic properties of
the cells. The measurements can only be interpreted fully in the light of
appropriate constitutive models. The development of a model for the
contractility of the cytoskeleton is the main aim of this article.

Contractile bundles composed of actin and myosin proteins form and dissociate
in non-muscle cells1 in response to external mechanical or chemical stimuli.
Typically, these contractile bundles are found in three forms: (i) circumferential
belts in epithelial cells, (ii) stress fibres along the ventral surfaces of cells, and (iii)
contractile rings that form at the equator of a cell during cytokinesis. Here, we focus
mainly on the stress fibres, though the generalmodelling framework developed here
holds for other types of contractile bundles as well.

Tan et al. (2003) and Roure et al. (2005) have sought to correlate the forces
exerted by mammalian cells on an array of micro-needles with the organization of
visible stress fibres (figure 1). The forces are obtained from the deflections of the
posts and the stress fibres revealed by subsequent application of an actin-staining
procedure. It is apparent from the image in figure 1 (and numerous other images)
that many of the force vectors are inclined to the axis of the visible fibre bundles.
Indeed, some are almost normal to the bundles and, often, the largest vectors are
present at locations where no visible stress fibres exist. The implication is that
the forces are induced by fibres on a much finer scale, not revealed by staining
procedures of this type. A corollary is that a contractility model capable of
characterizing the forces should emerge from continuum level considerations,
rather than from ensembles of discrete fibres. The primary intent of this article is
to present a detailed description of a continuum model for the evolution of the
cytoskeletal structure. Some capabilities of the model have been elucidated

1 In contrast to non-muscle cells, the cytoskeleton in muscle cells is relatively static and comprises a
regular array of filament bundles called sarcomeres.
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Figure 1. Measurement of contractile forces in a fibroblast cell on a bed of micro-needles. The actin
fibres are stained in green. The arrows show the deflection of the posts with the lengths of the
arrows proportional to the force exerted by the cell on the posts. There seems little correlation
between the orientations of the visible stress fibres and the directions of the force vectors (courtesy
of Prof. C. Chen, University of Pennsylvania).
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elsewhere (Deshpande et al. 2006), using it to simulate the response of a square
cell attached by springs to four supports. These simulations highlighted the role
of the spring compliance and of asymmetries in stiffness on the dynamic
evolution of the stress fibres. The present article includes additional simulations
which, together with those of Deshpande et al. (2006), demonstrate its
consistency with key features found in experiments.

Previous attempts at developing models for the cytoskeletal network in
stationary cells (i.e. neglecting cell spreading and motility) have taken the
perspective that the cytoskeleton is an interlinked structure of passive filaments
(Satcher & Dewey 1996; Storm et al. 2005). When included, cell contractility has
been modelled by simply prescribing a thermal strain to either a cell regarded as
(i) an isotropic elastic continuum (Nelson et al. 2005) or (ii) a discrete set of
elastic filaments (Mohrdieck et al. 2005). Such models neglect the biochemistry of
the active apparatus of the cell that generates, supports and responds to
mechanical forces.
Proc. R. Soc. A (2007)
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A generalized model for the contractility must be capable of characterizing the
basic interactions between the forces, the assembly and dissolution of stress fibres
and the compliance of the substrate. Moreover, once calibrated, it must explain
such effects as the strong influence of substrate compliance on the forces, the
dependence on cell size of the forces exerted at its periphery, as well the influence
of cell shape and boundary conditions on the orientations of the stress fibres. It
will be demonstrated that the model developed here is capable of addressing all of
these effects. At this initial stage, incorporation of focal adhesions into the model
is deliberately avoided. This exclusion allows a straightforward formulation
capable of replicating several important features found in cells. The intent is to
introduce the focal adhesions in later developments of the model.

The following logic has been used in the organization of this article.
(i) The salient biochemical processes are summarized and brought into a

framework that enables construction of the constitutive model.
(ii) The (three) coupled events that emerge from this assessment, expressed

mathematically, become the fundamental concepts underlying the model.
Initially, the concepts are implemented for a single fibre bundle to
illustrate that the model has the elements needed to reproduce the
following experimentally established characteristics: (a) the force induced
by the stress fibres decreases as the attachments become more compliant
and (b) the average force per post increases with increase in the number of
posts (Tan et al. 2003).

(iii) The model is extended to two dimensions and used to simulate four
features found in experiments: (a) the cell develops strong structural
anisotropy under uniaxial isometric loading while it remains isotropic
under biaxial isometric loading, (b) as the stress fibres form, they
concentrate adjacent to the attachments and orient preferentially, (c)
multiple activations are more effective at rearranging the cytoskeleton
into stress fibres, and (d) a high concentration of stress fibres form
immediately adjacent to a site of localized applied tension.
2. Key biochemical processes and experimental observations

(a ) Biochemical processes

Here, we describe the key biochemical processes governing those aspects of the
cytoskeleton dynamics that generate contractile forces in non-muscle cells. The
main aim is to introduce the key processes that motivate the proposed bio-chemo-
mechanical model, rather than review the extensive literature on focal adhesions,
contractility and signalling (see Appendix A in the electronic supplementary
material (ESM) for further details and schematics of the various processes).

In the suspended or resting state, the binding proteins or integrins are
dispersed over the cell surface (and may be attached to some actin filaments).
The short actin filaments in the cytoplasm are surrounded by a pool of actin
monomers bound to profilin. Myosin II exists in the bent state in which the
tail domain interacts with the motor head. The formation of stress fibres in the
cell is triggered by an activation signal in the form of either a nervous impulse
or an external signal. Several parallel intracellular pathways are involved.
Proc. R. Soc. A (2007)
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For example, adhesion to the extracellular matrix triggers a signalling pathway
that induces the activity of profilin, cofilin and gelsolin. In turn, this activates
PLC, which hydrolyses PIP2 and stimulates the release of Ca2C from the
endoplasmic reticulum. The influx of Ca2C activates gelsolin, which cleaves the
capped actin filaments into tiny fragments. The large numbers of free ends
generated in this manner are rapidly elongated by the monomeric actin pool,
forming many long filaments, some cross-linked with filamin and some bundled
by a-actinin. Phosphorylation triggered by Ca2C causes myosin II to
preferentially assume its extended state. This promotes the assembly of myosin
II into bipolar filaments that enter into the a-actinin-bound actin filament
bundles, resulting in the formation of stress fibres. These fibres generate tension
by cross-bridge cycling between the actin and the myosin filaments. When the
tension is allowed to relax, the actin filaments are no longer held in place by the
bipolar myosin filaments and the stress fibres disassemble.

(b ) Key experimental observations

(i) Substantial evidence supports the idea that tension contributes to the
formation of stress fibres. One set expresses the following role of suspended
fibroblasts in the contraction of collagen gels. Free-floating gels contract
over several days, by as much 90%, even though they lack stress fibres
(Burridge & Chrzanowska-Wodnicka 1996). If the gels are anchored,
isometric tension is generated and the fibroblasts develop prominent stress
fibres (Mochitate et al. 1991). Upon release of the tension, the attached gels
rapidly contract, followed by stress-fibre disassembly (Mochitate et al. 1991;
Grinnell 1994). Additionally, application of tension to cells in culture
stimulates the formation of stress fibres (Franke et al. 1984). Moreover,
when force is applied locally, an actin filament bundle is induced
immediately adjacent to its application site (Kolega 1986). Associated
with the tension-dependent stress-fibre assembly is the development of
structural anisotropy. For example, uniaxially constrained, fibroblast-
populated collagen gels develop a high degree of fibre alignment and
mechanical anisotropy, while gels constrained biaxially remain isotropic
(Thomopoulos et al. 2005).

(ii) Cells precisely sense the restraining force and respond by localized
proportional strengthening of the cytoskeleton linkages, allowing a stronger
force to be exerted on the integrins (e.g. Choquet et al. 1997). This
strengthening occurs within the first few seconds of the application of the
restraining force and is highly localized.

(iii) Cells ‘sense’ the stiffness of their substrates and exert smaller tractions on
more compliant substrates (Lo et al. 2000; Discher et al. 2005).
3. Constitutive model for a single stress fibre

(a ) The model

The preceding biochemistry suggests that the mechanical response of the stress
fibres comprises three coupled phenomena:
Proc. R. Soc. A (2007)
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(i) An activation signal that triggers the formation of actin and bipolar
myosin filaments.

(ii) A fibre-formation rate dependent on the activation signal, coupled with a
dissociation rate affected by the tension.

(iii) A contraction rate (contractility) for the stress fibre that depends on the
tension through the cross-bridge dynamics.

Phenomenological relations are proposed for each of these features. The
expressions chosen are the simplest possible without violating the biochemistry.
In future developments, whenwarranted, differentmathematical dependencies can
be considered for all three. These will not alter the general features predicted by the
model: only the absolute magnitudes and the time-scales will change.
(i) Rapid transmission of the extracellular signal triggering the polymerization of
the actin filaments and the phosphorylation of the myosin

The precise details of the signalling pathways are ignored. Rather, the level,
which may be thought of as the concentration of Ca2C, designated C(0%C%1),
is assumed given by

C Z exp
Kti
q

� �
; ð3:1Þ

where q is the decay constant of the signal and ti is the time measured from the
instant of the most recent signal. Over the time-scales of the contractile activity
of the cell (of the order of hours), we assume that there are no spatial gradients in
C and that the level is dominated by the most recent signal. Readers are referred
to Rudy (2000) for more sophisticated models of the Ca2C dynamics.
(ii) Polymerization/depolymerization of the actin filaments and phosphoryla-
tion/dephosphorylation of the myosin

The transduction of the signal results in: (i) the polymerization of the actin
filaments and the bundling of these filaments by a-actinin and (ii) the
phosphorylation of myosin II, which promotes the assembly of the myosin into
bipolar filaments. The interaction between the myosin II heads and the actin
filaments forms contractile bundles.

We characterize the activation level of the stress fibre bundles by a non-
dimensional parameter, h (0%h%1), defined as the ratio of the concentration of
the polymerized actin and phosphorylated myosin in the bundle to the maximum
concentrations permitted by the biochemistry (Deshpande et al. 2006). The
formation and the dissociation of the stress fibres, as parameterized through h,
are represented by a first-order kinetic scheme,

_hZ ð1KhÞC
�kf
q

� �
K 1K

T

T0

� �
h
�kb
q

� �
: ð3:2Þ

The over-dot denotes differentiation with respect to time, t, measured from
the instant of the application of the first signal. The term T is the tension in
the stress fibre and T0(h) the corresponding isometric tension for a given h.
Proc. R. Soc. A (2007)
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The dimensionless constants �kf and �kb govern the rate of formation and
dissociation of the stress fibres, respectively. The key features of equation (3.2)
are as follows: (i) the rate of the formation of the stress fibre (first square
bracket) decreases with increasing fibre activation h and is proportional to the
strength of the decaying signal and (ii) the rate of dissociation (second square
bracket) is proportional to the concentration of the polymerized actin and
phosphorylated myosin II. Moreover, to allow the contractile bundles to be held
together by the tension, we propose a dissociation term dependent on the
tension; namely, the dissociation rate is zero when the fibres are held at their
isometric tension, but increases linearly at lower tension.

The isometric tension T0 is taken to be directly proportional to the level of
activation of the stress fibre, T0ZhTmax. Here, Tmax is the isometric tension
when the concentration of the polymerized actin and phosphorylated myosin is
the maximum permitted by the biochemistry. We note that, in muscle cells, the
isometric tension depends on the overlap between the thick and the thin
filaments giving rise to a dependence on the muscle length. By contrast, in non-
muscle cells, cytoskeletal rearrangements, along with the formation of focal
adhesions, govern the dynamic formation and dissociation of the stress fibres;
namely, given the absence of a static cytoskeletal structure, there is no physical
motivation to include length dependence.
(iii) Tension versus velocity relation and the cross-bridge dynamics

The tension in the stress fibres is generated by the cross-bridge cycling
between the actin and the myosin filaments. This force generation mechanism is
similar (but not identical) to that in muscle cells. Consequently, we assume that
the influence of tension on the extension/shortening rate of the fibres is
adequately described by a Hill-like relation (Hill 1938)2. The Hill measurements
(sketched in figure 2) motivate a simple tension versus velocity relationship,

T

T0

Z

0
v

v0
!K

h

�kv

1C
�kv
h

v

v0

 !
K

h

�kv
%

v

v0
%0

1
v

v0
O0

:

8>>>>>>>>><
>>>>>>>>>:

ð3:3Þ

Here, v is the rate of change of the length of stress fibre (positive for lengthening and
negative for shortening). The non-dimensional constant, �kv, is the fractional
reduction in tension when the shortening rate increases by the reference value, v0.
2The Hill (1938) equation adequately models the cross-bridge dynamics in the low-frequency
domain and readers are referred to Rice et al. (1999) for a discussion on more sophisticated models
that capture the cross-bridge dynamics over a large frequency range. Since cell contractility is a
relatively slow process, it suffices to use the simple Hill-type description to model the tension versus
velocity relationship of the stress fibres.

Proc. R. Soc. A (2007)
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Figure 2. Hill (1938) tension, velocity relation for skeletal muscles. The simple approximation (3.3)
to the Hill relation used in this study is also included in the figure for comparison purposes.
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Under shortening conditions, this relation captures the main features of the Hill
relation (figure 2). Alternatives to equation (3.3) are discussed inAppendixB in the
electronic supplementary material.

A passive elastic contribution could also be included in the one-dimensional
stress fibre relation by assuming that the total force is the sum of the active
force as given by equations (3.1)–(3.3) and a force due to elastic stretching of
elements such as the intermediate filaments that act in parallel to the stress
fibre. Such passive elastic contributions will be considered in the two- and three-
dimensional models presented subsequently, but are neglected in the one-
dimensional model in order to better illustrate the essential features of the stress
fibre constitutive relation.
(b ) Illustrative examples

To give physical insight into these coupled equations, some examples are
presented for a single stress fibre bundle (with full realization that these
examples do not represent realistic situations). For simplicity, we assume that
the fibre is completely inactive at time tZ0. Thus, the response reduces to
solving the ordinary differential equations (3.1)–(3.3) for given boundary
conditions with the initial condition hZ0 at tZ0.

Effect of support stiffness. Consider a stress fibre held between two rigid
foundations through a support spring in series (figure 3), characterized by a
spring constant ks. This spring constant is defined via the relation TZksDx,
where T is the tension generated by the spring for an extension Dx. (Force
equilibrium dictates equality of the tension in the stress fibre and the spring.)
Activation initiates shortening of the stress fibre resisted by the support springs.
Proc. R. Soc. A (2007)
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The resulting coupled governing equations are equation (3.2) and

_T Z

ksv0
�kv

hK
T

Tmax

 !
0!T!T0

0 otherwise

;

8><
>: ð3:4Þ

with initial conditions hZTZ0 at tZ0. The problem is fully specified by four
independentnon-dimensionalvariables: �kf , �kb, thenon-dimensional support stiffness,

�ks h
ksv0q

Tmax
�kv

; ð3:5Þ

and the non-dimensional time, �th t=q. The resulting solution-dependent variables
are the non-dimensional tension in the stress fibre (and spring), �T hT=Tmax, and
the non-dimensional extension of the support spring, D�xhDx�kv=v0q. Unless
otherwise specified, the reaction rate constants are taken as �kfZ10 and �kbZ1:0,
referred to as the reference case. The non-dimensional spring constant is varied in the
range 0:5% �ks%80.

The effect of the spring stiffness on the evolution of tension �T with time �t is
plotted in figure 4a. For stiff springs (�ksO5:0), the steady-state tension always
reaches Tmax. Conversely, compliant springs (�ks%1:0) are unable to sustain
significant tension until the stress fibre has undergone substantial contraction.
Whereupon, h increases more slowly and the stress fibre does not achieve full
activation before the signal C has decayed. Consequently, the steady-state levels
of h and �T are both less than unity. The variation of the steady-state tension
�T ss hTss=Tmax with �ks (figure 4b) reveals the interplay between �ks and the
two reaction rates, �kf and �kb. Increasing the forward rate delays the drop-off in
�T ss to lower �ks. Increasing the dissociation rate of the fibres causes �T ss to fall
below its maximum at higher �ks.

A stress fibre on an array of N posts. This problem is motivated by
experimental investigations of the responses of cells on two-dimensional arrays of
micro-needles (Tan et al. 2003). These investigations revealed that the average
force per post increases with increasing number of posts N. Here, we consider the
analogous one-dimensional problem (figure 5) of a stress fibre spanning N
equispaced posts, each with stiffness ks (force Fi on the ith post is related to its
displacement via FiZksDxi, where Dxi is the displacement of the ith post).
The governing equations are derived here for a stress fibre on an odd number,
NZ2MC1, of posts (an analogous set of equations follow for an even number
Proc. R. Soc. A (2007)
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Figure 4. Effect of the spring stiffness on the response of the stress fibre. (a) The time evolution of
the normalized tension �T with non-dimensional time �t for four choices of the support stiffness �ks,
using the reaction constants: �kfZ10 and �kbZ1:0. (b) The normalized steady-state tension, �T ss, as
a function of �ks for three combinations of the forward and backward rate constants �kf and �kb.
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of posts). The array is symmetrical about the central post, labelled ‘post 0’ and it
suffices to consider only one-half of the array (the posts are labelled as indicated
in figure 5). With the coordinate x increasing from left to right (figure 5), the
equilibrium and the compatibility equations for the right half of the array are
given, respectively, as

_Ti ZKks
XM
kZi

D _xk ; ð3:6aÞ

D _xi ZD _xiK1 Cvi; ð3:6bÞ
where Ti and vi are the tension and the extension rate of the ith fibre segment
between the (iK1)th and ith posts. These equilibrium and compatibility
Proc. R. Soc. A (2007)
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conditions are combined with the constitutive equations

_hi Z ð1KhiÞ
C �kf
q

� �
K 1K

Ti

hiTmax

� �
hi

�kb
q

� �
; ð3:7aÞ
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Ti

hiTmax

Z
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vi
v0
!K
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�kv

1C
�kv
hi

vi
v0

 !
K

hi
�kv
%

vi
v0
%0

1
vi
v0
O0

;

8>>>>>>>>><
>>>>>>>>>:

ð3:7bÞ

and solved using a fifth-order Runge–Kutta method with initial conditions
hiZTiZDxiZ0 at tZ0 (hi and vi are the activation level and extension rate,
respectively, of the ith fibre segment). The forward and backward reaction rate
constants are fixed at �kfZ �kbZ10 and we investigate the effects of N and the post
stiffness ks. With F ss

i defined as the stead-state force on the ith post, the non-
dimensional average steady-state force per post is

�Fh
1

NTmax

XN
iZ1

Fss
i : ð3:8Þ

Plots for three choices of the non-dimensional post stiffness (figure 6) reveal
that �F first increases with N, reaches a maximum and then decreases. The
maximum �F is attained at larger N with decreasing �ks. The origin of this scaling
emerges from the following considerations. For a stress fibre spanning three
posts, the contraction is resisted only by the two outer posts (by symmetry the
central post does not deflect). For larger N, the contraction of the fibre segments
adjacent to the centre is resisted by an increasing number of posts (equation
(3.6a)), enhancing the resistance to contraction and, thereby, elevating �F
Proc. R. Soc. A (2007)
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(figure 4). With still more posts, all interior fibre segments achieve their
maximum tension Tmax, eliminating the force gradients towards the mid-section.
Consequently, the forces on the central posts approach zero, causing a reduction
in the net force �F with increasing N.

To further clarify, the temporal dependence of the deflections, stresses and
forces are examined. The post deflections D�xi for the 11-post case (figure 7)
reveal that, in steady-state, the outermost post undergoes the largest deflections,
while those at the inner posts become increasingly smaller, corresponding to the
Proc. R. Soc. A (2007)
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edge shear-lag phenomenon identified by Mohrdieck et al. (2005) and discussed
above. The associated effects are revealed by plotting the lengthwise distribution
of the steady-state tension �T ss hTss=Tmax in the stress fibre (figure 8a), and the
corresponding non-dimensional steady-state post forces, �F

ss
i h �ksD�xssi Z

ksDx
ss
i =Tmax, where Dxssi is the steady-state post deflection (figure 8b). The

gradients in the tension in the fibre first increase with increasing N (up to NZ5)
but then start to reduce towards the interior. This tension distribution in the
fibre results in the forces on the posts near the centre decreasing with increasing
N and nearly reducing to zero when NO5.
4. A constitutive model for a two-dimensional cytoskeletal network

We generalize the model to a cell comprising a two-dimensional network of stress
fibres by invoking the following key assumptions.

(i) There is sufficient actin and myosin in the cell that the activation of
the stress fibres in each direction is not limited by their availability.
Rather, it is limited by the tension and polymerization, expressed through
equation (3.2).
Proc. R. Soc. A (2007)



Figure 9. Macro- and micro-scales in a cell with a two-dimensional network of stress fibres. The
representative volume element (RVE) in the shape of a pillbox is also shown.
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(ii) A representative volume element (RVE)3 on a length-scale much
smaller than any leading dimension of the cell can be defined (figure 9).
The RVE has pillbox shape with radius R, depth h and volume VhpR2 h.

(iii) Stress fibres can form in any direction f with equal probability.

By adopting Cartesian tensor notation (Einstein summation convention over
repeated indices), the average Cauchy stress sij over the RVE resulting from the
fibres is defined from the stress tij at any point as

sij Z
1

V

ð
V
tijdV ; ð4:1Þ

with respect to the fixed orthogonal basis xi (figure 9). This RVE contains a large
number of stress fibres at different levels of polymerization, uniformly distributed
over Kp/2%f%p/2, where f is the fibre angle measured with respect to an
orthogonal set of base vectors ei that rotate (but do not deform) with the
material. Since ei are coincident with xi at time tZ0, f gives the stress fibre
orientation in the original configuration. Unless otherwise stated, all tensor and
vector components are measured with respect to the fixed basis xi.

The virtual work statement for the RVE isð
V
tijd _3ijdV Z

1

p

ðp=2
�p=2

TðfÞdvðfÞdf; ð4:2Þ

3
Hill (1963) defined an RVE as a domain that is (i) structurally typical of the entire mixture
(network of stress fibres) and (ii) sufficiently large compared with the micro-scale (say, the stress
fibre radius).
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where _3ij is the volume average of the strain rate (the symmetric part of the
spatial velocity gradient), d _3ij is an arbitrary variation in _3ij and dv is the
corresponding variation in the fibre extension rate, v. Employing compatibility,
the axial strain rate in the fibre, _3h _e=2R, is related to _3ij by

v

2R
h _3Z _311cos

2f�C _322sin
2f� C _312sin 2f�: ð4:3Þ

Here, f� is the angle of the stress fibre measured with respect to xi and is related

to f by the rigid body rotation of the material point. In a two-dimensional setting
(with anticlockwise rotations taken to be positive),

f� ZfC
1

2

ðt
0

v _u2
vx1

K
v _u1

vx 2

� �
dt; ð4:4Þ

where _ui are the displacement rates. Upon combining equations (4.1) and (4.3),
the virtual work statement (4.2) reduces to

sijd _3ij Z
2

p2Rh

ðp=2
�p=2

TðfÞ d _311cos
2f�Cd _322sin

2f�Cd _312sin 2f�� �
df: ð4:5Þ

Recall that d _3ij are arbitrary variations in _3ij . Thus, by successively allowing one
component of d _3ij to be non-zero while the others are set to zero (e.g. d _311Z1
and d _322Zd _312Zd _321Z0 to obtain s11), the average stress is given as

sij Z
1

p

ðp=2
Kp=2

sðfÞcos2f� sðfÞ
2

sin 2f�

sðfÞ
2

sin 2f� sðfÞsin2f�

0
BBBB@

1
CCCCAdf; ð4:6aÞ

where the ‘smeared-out’ stress s is related to the fibre tension T via

sðfÞh 2TðfÞ
pRh

: ð4:6bÞ

We now prescribe the governing equations for s, analogous to the evolution
equations for T for a single stress fibre. Recall that the activation of the stress
fibres in each direction is regarded as decoupled and not limited by the
availability of actin or myosin. Thus, the evolution of the activation level at an
angle f becomes

_hðfÞZ 1KhðfÞ½ �
�kfC

q
K 1K

sðfÞ
s0ðfÞ

� �
hðfÞ

�kb
q
; ð4:7aÞ

where the isometric stress is s0(f)Zh(f)smax. Here, s0 and smax are related to
the fibre tensions via

s0ðfÞh
2T0ðfÞ
pRh

and smaxh
2Tmax

pRh
; ð4:7bÞ

respectively. With the fibre extension and strain rate related by vh _eZ2R _3, the
Hill-like equation (3.3) is generalized to the intensive quantities of the fibre stress
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s and fibre strain rate _3 as

s

s0
Z

0
_3

_30
!K

h

�kv

1C
�kv
h

_3

_30

 !
K

h

�kv
%

_3

_30
%0

1
_3

_30
O0

:

8>>>>>>>>><
>>>>>>>>>:

ð4:8Þ

The active properties of the stress fibres, as parameterized through smax, �kv, �kf
and �kb, remain unaffected by the material deformation as the cytoskeletal
rearrangements essentially ‘reset’ the stress fibre properties with continued
deformation. Consequently, a ‘natural’ state for the stress fibres does not exist.

The contractile response in two dimensions is expected to include a
contribution from the passive elasticity provided mainly by the intermediate
filaments of the cytoskeleton attached to the nuclear and plasma membranes. We
assume additive decomposition of the active and passive stresses since the fibres
act in parallel with the intermediate filaments and the cell membrane. Here, for
simplicity, we employ a finite strain elasticity that readily reduces to the
isotropic linear elastic Hooke’s law for infinitesimal deformation. The passive
elastic response is described by a strain energy density function W0 (per unit
undeformed volume),

W0 Z
E

2ð1CnÞ Êij Êij C
En

ð1K2nÞð1CnÞ Ê
2
kk; ð4:9aÞ

where E and n are Young’s modulus and Poisson’s ratio, respectively, and Êij is
the Green–Lagrange strain

Êij Z
1

2
FmiFmjKdij
� �

: ð4:9bÞ

Here, dij is the Kronecker delta and the deformation gradient is given as
FijZdijC(vui/vxj). The work conjugate to the Green–Lagrange strain is the
second Piola–Kirchhoff stress SijZJFK1

im SmnF
K1
jn , where Sij is the Cauchy stress

and JZdet (Fij). Thus, the passive elastic stress contribution is specified via

S elastic
ij Z

vW0

vÊij

Z
En

ð1K2nÞð1CnÞ Êkkdij C
E

ð1CnÞ Êij : ð4:10Þ

Note that, in the numerical examples presented here and in Deshpande et al.
(2006), the strains in the cell are relatively small and a linear elastic relation for
the passive elasticity suffices. When warranted, equation (4.10) can readily be
replaced by a nonlinear (hyperelastic) law. Employing additive decomposition,
the total Cauchy stress Sij, combining active contributions from equation (4.6a)
and passive elasticity from equation (4.10), is obtained by transforming Selastic

ij ,
such that

Sij Zsij C
1

J

En

ð1K2nÞð1CnÞ Êkkdmn C
E

ð1CnÞ Êmn

� �
FimFjn: ð4:11Þ
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Figure 10. Schematic of the isometric (a) uniaxial tension and (b) biaxial tension boundary value
problems under consideration. The coordinate system employed is also shown.
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The three-dimensional analogue of the active features of the constitutive law is
presented in Appendix C (see electronic supplementary material), for which
equation (4.11) can then be used as given.

The foregoing model has been implemented as a user-defined material model
(UMAT) in the commercial finite element package ABAQUS4. Details of the
numerical implementation are given inAppendixD in the electronic supplementary
material. All calculations are performed in plane stress (s33ZS33Z0) finite
deformation setting, i.e. the effects of geometry changes on the momentum balance
and rigid body rotations are taken into account. Four-noded elements (CPS4 in
ABAQUS notation) are employed.
(a ) Reference material properties

No attempt is made to justify the choice of the parameters employed using
either theoretical arguments or precise experimental measurements. Rather,
these constants have been chosen to give results similar to those in Tan et al.
(2003). The decay constant of the signal was taken to be qZ720 s, while the
passive Young’s modulus and Poisson’s ratio chosen to be EZ0.077 nN mmK2

and nZ0.3, respectively. It is worth emphasizing here that the permeability of
the cell walls implies that cells typically do not exhibit an incompressible
response. Hence, unlike soft tissues, the choice nz0.5 is not appropriate for single
cells. The non-dimensional reaction rate constants are �kfZ10 and �kbZ1:0, while
the non-dimensional fibre rate sensitivity is �kvZ10. The maximum tension
exerted by the stress fibres is smaxZ3.9 nN mmK2 and the reference strain rate in
the cross-bridge dynamics law is _30Z2:8!10K4 s�1. The non-dimensional
material properties of the cell are �EhE=smax; n; �kf ; �kb; �kv and _�30 h _30q. Unless
otherwise specified, in the results presented subsequently, the corresponding

4ABAQUS (2004) User’s Manual, v. 6.5. ABAQUS, Inc.
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Figure 11. (a) Time evolution of the normalized stress S11=smax for uniaxial and biaxial isometric
tension. (b) The corresponding time evolution of the logarithmic transverse strain, �322. The uniaxial
isometric tension predictions are shown for three selected values of the normalized passive Young’s
modulus, �E. Unless otherwise specified, the material properties are taken as their reference values.
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non-dimensional cell properties are �EZ0:02, nZ0.3, �kfZ10, �kbZ1:0, �kvZ10 and
_�30Z0:2. The cell is initially stress and stress-fibre free; namely, the initial
conditions are h(f)Z0 at time tZ0 over the entire cell.
(b ) Development of structural anisotropy in a cell under isometric conditions

Here, we demonstrate the capabilities of the constitutive model for predicting the
development of structural anisotropy. Rectangular cells, dimensions l!h (figure 10),
are subjected to a single activation signal at time tZ0 with the following boundary
conditions: (i) Uniaxial isometric tension: u1Z0 on the left and the right edges of
length h, with tractions T1ZT2Z0 on the top and the bottom surfaces of length l
and T2Z0 on the left and the right edges (figure 10a). (ii) Biaxial isometric tension:
u1Z0 on the left and the right edges of length h and u2Z0 on the top and the bottom
surfaces of length l. The tractions, T2Z0 and T1Z0, on the vertical and horizontal
edges, respectively (figure 10b). Under both loading conditions, the fields
(Sij; sðfÞ;hðfÞ and _3ðfÞ) are spatially uniform with no rotation of the material.
All results are thus independent of the dimensions of the cell.
Proc. R. Soc. A (2007)
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Figure 12. (a) Distribution of the stress fibre activation at selected times t=q, as a function of the
fibre angle f, calculated for uniaxial isometric tension, with �EZ0:02. (b) The steady-state
distribution of the stress fibre activation as a function of the fibre angle, f, for uniaxial isometric
tension, with three selected values of �E.

805Model for contractility of cytoskeleton
For uniaxial isometric loading, the time evolution of the normalized stress
S11/smax (figure 11a) and the corresponding evolution of the logarithmic
transverse strain �322 (figure 11b) indicate that, after an initial peak stress at
t/qz1, a steady state is achieved at t/qz30, coincident with cessation of the
transverse straining of the cells. The corresponding distributions of stress fibre
activation levels h(f) are shown in figure 12a at four selected t/q (the steady-
state distribution of h is marked as t/qZN). Recall that the material does not
undergo rigid body rotation, so that the stress fibre orientations f in the
undeformed configuration are the same as their respective orientations f* in
the deformed configuration. At steady state, the stress fibres tend to align with
the loading direction, resulting in a highly anisotropic cytoskeletal structure
(figure 12b). The results can be understood as follows. Immediately after the
signal is applied, stress fibres are activated in all directions. Fibres at fz08 are
constrained against shortening by the uniaxial isometric boundary condition
(albeit to different extents). They remain activated, as evident in figure 12a at
t/qZ0.5. However, fibres at fz908 are unconstrained and shorten at strain rate
Proc. R. Soc. A (2007)
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_3zK_30=�kv, with negligible s22 stress (as required by the traction-free boundary
conditions on the top and the bottom surfaces of the cell). Thus, the cell starts to
contract in the x2-direction. But since a small stress s22 is generated in x2, these
fibres begin to dissociate. The outcome at steady state is as follows. The fibres at
fZ08 are fully activated (hZ1.0), while those at jfj!208 remain active, but with
0!h!1.0, and all others completely dissociate (hZ0). The tensile s22 stresses
generated by the fibres at fs08 are balanced by the elastic stresses due to
compression in the x2-direction. Increasing �E elevates the isomeric tension and
decreases the transverse straining (figures 11 and 12). Moreover, with increasing
�E steady state is achieved sooner, without overshoot in the generated tension.
This trend arises because the fibres orthogonal to the tensile axis contract and
generate an axial compressive stress (owing to the Poisson effect), thereby
reducing the axial tension. Increasing Young’s modulus decreases this
contraction in the x2-direction. The effect of �E on the structural anisotropy is
illustrated in figure 12, revealing that increasing �E causes fibres over a wider
range of f to be recruited into the tension generating apparatus, thereupon
reducing the structural anisotropy.

For the cell under biaxial loading, since no straining occurs, the passive
Young’s modulus does not affect the stresses generated. The cell generates the
highest tension at t/qz1 (figure 11a) with a steady-state stress, S11/smaxZ
S22/smaxZ0.5.
5. Responses of a square cell on four supports

Experiments to probe the forces generated by a cell on a bed of micro-needles
(Tan et al. 2003) have motivated the two-dimensional plane stress problem
illustrated in figure 13. Using this representation, the focal adhesions need not be
considered explicitly. A similar problem considered by Deshpande et al. (2006;
figures 4–7) demonstrated that the foregoing constitutive model captures key
experimental observations: (i) the decrease of the forces generated by the cell
with decreasing support stiffness, (ii) the influence of cell shape and boundary
conditions on the development of structural anisotropy, and (iii) the high
concentration of the stress fibres at the focal adhesions. Here, we demonstrate
two additional features: (i) the effect of multiple activation signals and (ii) the
response to a localized force.

(a ) Geometry and boundary conditions

A square cell with reference properties, side LZ50 mm (thickness bZ1 mm), is
supported over a length LsZ5 mm at the four edges by identical elastic
foundations of stiffness kEZ0.77 nN mmK3 (figure 13). The foundation rotates
with the cell edges and thus can only exert traction normal to the supported cell
edges, i.e. in this finite deformation setting, the traction rate

~
_= on a cell surface

with unit outward normal r
~
en (in the current configuration) is given by

~
_=ZKkE _un

~
en C= _

~
en; ð5:1Þ

where _un is the displacement rate along r
~
en and = is the magnitude of the

traction vector
~
=. Initially, (tZ0), h(f)Z0 over the entire cell, with the first

activation signal applied at tZ0. A uniform FE mesh with an element size of
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Figure 13. Schematic of the boundary value problem analysed to simulate the contraction of a square
cell on an array of four posts. Note that the springs exert a force whose infinitesimal increments with
respect to time are normal to the deformedperimeter of the cell. (a)Contraction of the cell constrained
by the four supports and (b) contraction of the cell constrained by the four supports with simultaneous
application of a localized tension on a patch on the right surface of the cell.
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0.25 mm was employed in all calculations. The additional non-dimensional
variables in the problem are �LhL=Ls and �kE hkEL=smax. In all the examples
presented here, �LZ �kEZ10.
Proc. R. Soc. A (2007)
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Results are presented for the time evolution of the average displacement over
the support area, defined as

�uh
u

L
Z

1

2LLs
#
2Ls

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
1 Cu22

q
ds; ð5:2Þ

where ui are the displacement components of the cell along the supported edges.
The corresponding work-conjugate non-dimensional support force is
�FhF=bLssmax. In order to visualize the evolution of the stress fibres, we define
two additional quantities.

(i) The average stress fibre activation over all orientations,

�hh
1

p

ðp=2
Kp=2

hðfÞdf: ð5:3Þ

(ii) The maximum principal value of the active stresses, sij, and the associated
principal direction, measured as the orientation fp with respect to the
x1-axis (figure 13). The orientation fp may be regarded as the ‘resultant’
stress fibre direction.
(b ) Effect of multiple activations

The motivation is the suggestion that a single long activation of osteoblasts
(cells that play a critical role in the process of new bone formation) is less
successful in reorganizing the cytoskeleton into stress fibres than multiple short
activations separated by rest periods (Robling et al. 2001). This suggestion has
been made based on the observation that bone formation is enhanced when
activations are interspersed with rest periods. Here, we contrast the multiple and
single activation responses of the cell.

In order to contrast the response of the cell subjected to a single sustained and
multiple activations, we consider the following three activation prescriptions for
the cell of figure 13a.

(i) A single activation signal with a decay constant of qZ1440 s applied to
the cell at time �tZ0 (i.e. _�30Z0:4 with all other cell properties fixed at
their reference values).

(ii) Two activation signals (both with a decay constant of qZ720 s) applied to
the cell at times �tZ0 and 15. All the cell properties are thus unchanged
from their reference values in this case.

(iii) Four activation signals (each with a decay constant of qZ360 s) applied
to the cell at times �tZ0, 15, 30 and 45. Thus, _�3oZ0:1 with all other cell
properties fixed at their reference values.

These three prescriptions have been chosen such that the total activation time
SqZ1440 s in all the cases and in the case of multiple activations, the next
activation is only applied after the response of the cell has attained a steady state
as a result of the previous activation.
Proc. R. Soc. A (2007)
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Figure 14. Time evolution of (a) the average support displacement �u and (b) the support force �F for
the cell sketched in figure 13a subjected to multiple activations and a single prolonged activation.

809Model for contractility of cytoskeleton
The time evolutions of the average support displacement, �u, and forces, �F
(figure 14), indicate that while the final steady state attained by the cell is similar
for two and four activation signals, these steady-state levels are higher than those
attained by the cell when it is subjected to a single prolonged activation.
Moreover, when the cell is subjected to a single prolonged activation, the force
exerted by the cell at the supports initially overshoots, before decreasing towards
the steady state. The distributions of �h for the single prolonged activation
(qZ1440 s) and the two activation signal (qZ720 s) cases are plotted in figure 15
(at t/qZ15 and 60) with the orientations of the principal stress included as line
segments whose length is scaled by the normalized stress, �sp hsp=smax. The long
activation signal results in a higher concentration of stress fibres at �tZ15, while
at steady state (�tZ60), higher concentrations develop in the cell subjected to
two activation signals. This indicates that the nonlinearity of the cell response
results in the cell rearranging the cytoskeleton more effectively when subjected to
multiple activations rather than one prolonged activation.
Proc. R. Soc. A (2007)



t /q = 15

t /q = 60

(a) (b)

0.30.20.10

h
sp = 0.25

Figure 15. Distribution of the average stress fibre activation level �h for two of the cases considered
in figure 14. (a) Two activations and (b) a single prolonged activation. The distributions of �h are
shown at times �tZ15 and 60. The distributions of the orientations, fp, of the maximum principal
stress, �sp, are also included as line segments (with the length scaled by the magnitude of the
normalized stress �sp). The solid circles show the original positions of the cell corners.
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(c ) Response of the cell to the application of a localized force

Experiments by Kolega (1986) have demonstrated that tension applied to a
localized site on the cell surface results in a bundle of stress fibres being induced
immediately adjacent to this site. Motivated by this observation, we consider the
problem sketched in figure 13b where a localized tension is imposed over a central
patch on the right-hand surface of the cell, in accordance with the following
conditions: (i) a single activation signal is applied at tZ0 and (ii) a displacement
rate _u fZ10K4 mm sK1 is applied in the x1-direction over a centrally situated
patch, length LfZ5 mm, on the right surface of the cell (figure 13b) over duration,
0%�t%�tf (where �tfZ3:75). Subsequently, the patch is fixed, with displacement
rate _u fZ0 prescribed in the x1-direction, over Lf.

The work-conjugate force associated with the applied displacement rate _uf is
designated Ff. The following additional non-dimensional groups are present here:
(i) the patch length �Lf hLf=L, (ii) the loading rate _�uf h _ufq=L, and (iii) the force
Proc. R. Soc. A (2007)



10 15 20

0.4

0.5

0.2

0.3

0.1

0

time (t /q)

fo
rc

e 
(F

f)

5

Figure 16. Time evolution of the normalized applied force, �F f , for the problem sketched in
figure 13b. The displacement rate _ufZ0 for �tO3:75 and the force is at its peak value at �tZ3:75.

(a) (b)

0.0 0.2 0.4

h
sp = 0.25

Figure 17. Distribution of the average stress fibre activation level, �h, for the problem sketched in
figure 13b. The distributions are shown at times (a) �tZ3:75 and (b) at steady-state corresponding
to �tZ19. The distributions of the orientations, fp, of the maximum principal stress, �sp, are also
included as line segments (with the length scaled by the magnitude of the normalized stress �sp).
The solid circles show the original positions of the cell corners.
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�F f hFf=ðbLfsmaxÞ that is the work conjugate to the applied displacement rate _�uf .
In the calculations, �LfZ0:1 with displacement rate _�ufZ0:0014 applied over the
duration 0%�t%3:75 and _�ufZ0 for �tO3:75.

The normalized force �F f required to continue displacing the patch at a rate _uf

increases with time (figure 16). When the displacement rate is set to zero (at
�tZ3:75), the force begins to decrease before reaching steady state, �F fZ0:4,
at time �tz15. The distributions of the average stress fibre activation levels at
�tZ3:75 and 19 (figure 17a,b, respectively) with the orientations of �sp reveal that
(i) a high concentration of stress fibres is induced immediately adjacent to the
Proc. R. Soc. A (2007)
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site of applied tension, (ii) stress fibres form normal to the surface at this
location, and (iii) at steady state (�tZ19), a high concentration of stress fibres
continues to persist near the supports and at the site of the applied tension.
6. Discussion

Contractility in non-muscle cells has previously been modelled by prescribing a
thermal strain to either a cell otherwise regarded as an isotropic elastic continuum
(Nelson et al. 2005) or a discrete set of elastic filaments representing the stress fibres
(Mohrdieck et al. 2005). Such models neglect the biochemistry of the active
apparatus of the cell that generates, supports and responds to mechanical forces.
The model presented here accounts for the nonlinear coupling between signalling,
the kinetics of tension-dependent stress-fibre formation/dissolution and stress-
dependent contractility. The distinguishing features of this model are as follows.

(i) It accounts for micro-structural evolution of the cytoskeleton. In particular,
the dynamic reorganization of the cytoskeleton into stress fibres has been
motivated through biochemical considerations coupled with the mechanics.

(ii) The active apparatus of a cell cannot support compressive forces or stresses
and thus Ingber (1997) suggested ‘tensegrity’ as the architectural basis for the
cytoskeletal arrangements. The current model automatically ensures that
only tensile active stresses are generated without assuming a priori an
arrangement of stress fibres that ensures a tensegrity structure. Rather, the
tensile stress fibre network is allowed to evolve in a manner dictated by the
boundary conditions applied to the cell.

These critical features enable themodel to predict awide range of experimentally
observed phenomena. However, a note of caution is appropriate. The model is
highly nonlinear and the results depend on the choice of the parameters. For
example, the results in figure 14 indicate that the steady-state forces due to two or
four activations are reasonably similar, while a single prolonged activation results
in significantly smaller support forces. This outcome will depend strongly on the
couplings between the signalling, fibre formation kinetics, dissociation and
contractility. Large-scale parametric studies will be used to fully understand
these nonlinear couplings before embarking on generalized statements.
7. Concluding remarks

Abiochemically inspiredmodel has beenpresented for the dynamic rearrangementof
the cytoskeleton that incorporates cell contractility. The constitutive equations are
presented for the formationand response of a single stressfibre andamodel developed
for a two- and three-dimensional cytoskeletal network. The contribution of passive
elasticity is also included in the two- and three-dimensionalmodels.Allmodels entail
the highly nonlinear interactionbetween signalling, thekinetics of tension-dependent
stress-fibre formation/dissolution and stress-dependent contractility.

One-dimensional numerical examples of a single stress fibre constrained
between rigid supports with a spring in series, as well as a stress fibre on an array
of posts, are presented in order to illustrate the salient features of the model
Proc. R. Soc. A (2007)
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including: (i) the force exerted by the stress fibre increases with increasing
support stiffness and (ii) the average force exerted by the stress fibre on the array
of post first increases with increasing number of posts and thereafter decreases.
Consistent with experimental observations, the maximum deflection of the posts
occurs towards the edges of the array.

Numerical examples have been presented for the contractility of a cell with a
two-dimensional cytoskeletal network. The uniaxial and biaxial isometric tension
responses have been investigated. The model captures the development of
structural anisotropy under uniaxial isometric loading conditions, while the cell
remains isotropic under biaxial loading. It predicts a strong coupling between the
development of anisotropy and the passive elasticity of the cell: increasing the
passive Young’s modulus diffuses the formation of stress fibres and reduces
the anisotropy.

The response of a square cell on four corner supports has been considered. In
line with the experimental findings, the model predicts that (i) a single prolonged
activation signal is less effective at developing stress fibres than multiple shorter
signals and (ii) a high concentration of stress fibres is formed near the supports
and the sites of localized applied tension.

The results taken together with those in Deshpande et al. (2006) demonstrate
that this model captures a wide range of key experimental findings on the
contractility of non-muscle cells. The correspondences between the simulations
presented in Deshpande et al. (2006) and the in vitro observations include: (i) the
decrease of forces generated by the cell with increasing substrate compliance, (ii)
the influence of cell shape and boundary conditions on the development of
structural anisotropy, and (iii) the high concentration of stress fibres at focal
adhesions. However, direct contact with experiments such as those in Parker et al.
(2002) andTan et al. (2003) will require (i) calibration of the constants in themodel
against experimental data and (ii) the inclusion of additional features in the model
such as the effects of cell spreading and the development of focal adhesions.

The model can be used to address one of the key challenges in cell
biomechanics; namely, how to measure the mechanical characteristics of living
cells that react to the measurement tools. Since the model captures the
reorganization of the cytoskeletal elements in response to mechanical
perturbations, it can be employed as a framework to design and interpret
appropriate experiments.
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