Session 17 SOFT GLASSY RHEOLOGY

Recall: Magnetic Twisting Cytometry

- Torque applied at surface of cells with magbeads
- Used to determine cell mechanics
 - Cellular viscoelasticity (Fabry, Fredberg)
 - Mechanotransduction (Wang, Ingber)

Particle Tracking Measurement

- Fast, real-time image analysis
 - 16 frames per twist
 - Stroboscopic technique for >1 Hz twists
- Individual particle tracking using intensityweighted centroid calculation.

 Small phase lag between twist frequency and displacement frequency

Complex Modulus

• Complex modulus defined by ratio of complex applied torque and complex bead displacement $\tilde{g} = \tilde{T}/\tilde{d}$

- Elastic (storage) modulus:
- Loss modulus:
- Loss tangent:

 $g' = \operatorname{Re}(\cdot)$ $g'' = \operatorname{Im}(\cdot)$ $\eta = g''/g'$

 Transform to storage modulus and loss modulus through geometric factor α = 6.8 μm

 $\tilde{G} = \alpha \tilde{g}$

Shear Stress Response

- Physiological range of stress
- Linear mechanical behavior observed
- No observation of nonlinear behavior as by others
 - 🗶 Strain-hardening
 - Shear-thinning

Frequency Response

- Storage modulus
 - Increased with frequency
 - Weak power law observed on log-log plot

$$G' \simeq f^{x-1}$$

- Loss modulus
 - Smaller than G' except at 1 kHz
 - Weak power law observed for < 10 Hz
 - Newton viscosity characteristics observed > 10 Hz
 - Slope approaches 1 (x = 2)

Structural Damping Law

• In angular frequency domain ($\omega = 2\pi f$)

$$\tilde{g} = g_0 \left(\frac{\omega}{\Phi_0}\right)^{x-1} (1 - i\overline{\eta}) \Gamma(2 - x) \cos\frac{\pi}{2} (x - 1) + i\omega\mu$$
$$\overline{\eta} = \tan\frac{\pi}{2} (x - 1)$$

- Scale factor for stiffness: g_0
- Scale factor for frequency: Φ_0
- * Gamma Function: Γ
- Newtonian viscosity: μ

Structural Damping Law

$$\tilde{g} = g_0 \left(\frac{\omega}{\Phi_0}\right)^{x-1} (1 - i\overline{\eta}) \Gamma(2 - x) \cos\frac{\pi}{2} (x - 1) + i\omega\mu$$
$$\overline{\eta} = \tan\frac{\pi}{2} (x - 1)$$

- Storage modulus is real part of equation
- Loss modulus is imaginary part of equation
 - Newton viscous term *iω*μ relevant at hi frequency only
 - As $x \to 1$, slope (x-1) $\to 0$, $\eta \to 0$, $g' \to g_0$ (Solid-like)

• As $x \to 2$, $\cos(\cdot) \to 0$, $\overline{\eta} \to \infty$, $g'' \to \mu$ (Fluid-like)

Independence of Parameters

- Structural damping described by parameters:
 - Scale factor for stiffness: g₀
 - Scale factor for frequency: Φ_0
 - Newtonian viscosity: μ
 - Power law exponent: x
- Noise temperature (x) is master parameter
 Shown in following slides

Contractility & CSK Disruption

- Common intersection exists for G' vs. f curves
 - Lines represent structural damping equation
 - Parameters g_0 , Φ_0 appear invariant with drugs
- Statistical analysis
 - 3 parameter fit (g_0 , Φ_0 , x) is not statistically different than 1 parameter fit (x and g_0 , Φ_0 fixed)

10

Contractility & CSK Disruption

- Loss moduli merge onto single curve at high f
- Fixed µ can match the data
- However, varied µ can slightly improve statistical fit
- This plus g₀, Φ₀ argument indicates x as single cell mechanics parameter

Universality

- Common structural damping behavior
 - Power-law for G' and G'' vs. f
 - Common extrapolated intersection of G' vs. f with drug treatment
 - Merging of G" vs. f curves to single line at high freq
- Observed in
 - <u>Cell types</u>: macrophages, neutrophils, endothelial, epithelial, fibroblasts, cancer cells
 - <u>CSK drugs</u>: Myosin inhibitors (BDM), MLCK inhibitors (ML-7, ML-9), ROCK inhibitors, actin polymerizing inhibitors (Latrunculin), actin stabilizers (jasplakinolide)
 - <u>Ligand types</u>: RGD-peptide, collagen, vitronectin, fibronectin, urokinase, acetylated-LDL, adhesion receptor antibodies
 - <u>Testing systems</u>: AFM, mag-tweezers, rotating disk rheometers

Master Curves

Normalized stiffness G_n = G'_{0.75 Hz} / G₀

$$G_n = \frac{G'}{G_0} = \frac{\operatorname{Re}(G)}{G_0} \Longrightarrow \ln G_n = (x-1)\ln\left(\frac{2\pi f}{\Phi_0}\right) \qquad \eta = \tan\frac{\pi}{2}(x-1)$$

Soft Glassy Rheology

- Material types include foams, pastes, colloids, emulsions, slurries, (and cells)
- Common behavior
 - Small elasticity (Pa to 1 kPa)
 - Weak power-law for G' and G'' vs. f
 - Loss tangent η is frequency independent and order 0.1
- Shared generic properties
 - Composed of elements that are discrete, numerous, aggregate with one another via weak interactions
 - Geometric arrangement that is structurally disordered and metastable

Soft Glassy Rheology Theory

- Elements (particles, proteins, beads, etc.) contained in an energy landscape that contains deep energy wells
 - Energy wells defined from interactions with other elements
 - Individual elements unable to escape wells by thermal energy alone but by agitation
- Parameter x is measure of agitation
 - "Effective Temperature" or "Noise Level"
 - When x = 1, materials is in a frozen state has ordered structure and elasticity
 - When x > 1, sufficient "noise" that elements can hop between wells. and system can flow and become more disordered

Soft Glass Rheology for Cells

- Cellular energy wells from CSK binding energies
 - Actin filament cross-linking
 - Actin-myosin cross-bridges
 - Hydrophobic interactions
 - Ionic charge or size exclusion
- Drug effects

- Agents that inactivate contractile apparatus or cytoskeletal disruption move cell away from frozen state (glass transition)
- Decreasing noise temperature is formation of ordered structure
- Increasing noise temperature is disordered and fluid state