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8 Polymer-based models of cytoskeletal networks

F.C. MacKintosh

ABSTRACT: Most plant and animal cells possess a complex structure of filamentous proteins
and associated proteins and enzymes for bundling, cross-linking, and active force generation.
This cytoskeleton is largely responsible for cell elasticity and mechanical stability. It can also
play a key role in cell locomotion. Over the last few years, the single-molecule micromechanics
of many of the important constituents of the cytoskeleton have been studied in great detail by
biophysical techniques such as high-resolution microscopy, scanning force microscopy, and
optical tweezers. At the same time, numerous in vitro experiments aimed at understanding
some of the unique mechanical and dynamic properties of solutions and networks of cytoskele-
tal filaments have been performed. In parallel with these experiments, theoretical models have
emerged that have both served to explain many of the essential material properties of these net-
works, as well as to motivate quantitative experiments to determine, for example concentration
dependence of shear moduli and the effects of cross-links. This chapter is devoted to theoretical
models of the cytoskeleton based on polymer physics at both the level of single protein fila-
ments and the level of solutions and networks of cross-linked or entangled filaments. We begin
with a derivation of the static and dynamic properties of single cytoskeletal filaments. We then
proceed to build up models of solutions and cross-linked gels of cytoskeletal filaments and we
discuss the comparison of these models with a variety of experiments on in vitro model systems.

Introduction

Understanding the mechanical properties of cells and even whole tissues continues
to pose significant challenges. Cells experience a variety of external stresses and
forces, and they exert forces on their surroundings – for instance, in cell locomotion.
The mechanical interaction of cells with their surroundings depends on structures
such as cell membranes and complex networks of filamentous proteins. Although
these cellular components have been known for many years, important outstanding
problems remain concerning the origins and regulation of cell mechanical properties
(Pollard and Cooper, 1986; Alberts et al., 1994; Boal, 2002). These mechanical factors
determine how a cell maintains and modifies its shape, how it moves, and even how
cells adhere to one another. Mechanical stimulus of cells can also result in changes
in gene expression.

Cells exhibit rich composite structures ranging from the nanometer to the microm-
eter scale. These structures combine soft membranes and rather rigid filamentous
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proteins or biopolymers, among other components. Most plant and animal cells, in
fact, possess a complex network structure of biopolymers and associated proteins and
enzymes for bundling, cross-linking, and active force generation. This cytoskeleton
is often the principal determinant of cell elasticity and mechanical stability.

Over the last few years, the single-molecule properties of many of the important
building blocks of the cytoskeleton have been studied in great detail by biophysi-
cal techniques such as high-resolution microscopy, scanning force microscopy, and
optical tweezers. At the same time, numerous in vitro experiments have aimed to
understand some of the unique mechanical and dynamic properties of solutions and
networks of cytoskeletal filaments. In parallel with these experiments, theoretical
models have emerged that have served both to explain many of the essential mate-
rial properties of these networks, as well as to motivate quantitative experiments to
determine the way material properties are regulated by, for example, cross-linking
and bundling proteins. Here, we focus on recent theoretical modeling of cytoskeletal
solutions and networks.

One of the principal components of the cytoskeleton, and even one of the most
prevalent proteins in the cell, is actin. This exists in both monomeric or globular
(G-actin) and polymeric or filamentary (F-actin) forms. Actin filaments can form
a network of entangled, branched, and/or cross-linked filaments known as the actin
cortex, which is frequently found near the periphery of cells. In vivo, this network is
far from passive, with both active motion and (contractile) force generation during
cell locomotion, and with a strong coupling to membrane proteins that appears to play
a key role in the ability of cells to sense and respond to external stresses.

In order to understand these complex structures, quantitative models are needed
for the structure, interactions, and mechanical response of networks such as the actin
cortex. Unlike networks and gels of most synthetic polymers, however, these networks
have been clearly shown to possess properties that cannot be modeled by existing
polymer theories. These properties include rather large shear moduli (compared with
synthetic polymers under similar conditions), strong signatures of nonlinear response
(in which, for example, the shear modulus can increase by a full factor of ten or
more under modest strains of only 10 percent or so) (Janmey et al., 1994), and unique
dynamics. In a very close and active collaboration between theory and experiment over
the past few years, a standard model of sorts for the material properties of semiflexible
polymer networks has emerged, which can explain many of the observed properties
of F-actin networks, at least in vitro. Central to these models has been the semiflexible
nature of the constituent filaments, which is both a fundamental property of almost any
filamentous protein, as well as a clear departure from conventional polymer physics,
which has focused on flexible or rod-like limits. In contrast, biopolymers such as
F-actin are nearly rigid on the scale of a micrometer, while at the same time showing
significant thermal fluctuations on the cellular scale of a few microns.

This chapter begins with an introduction to models of single-filament response
and dynamics, and in fact, spends most of its time on a detailed understanding of
these single-filament properties. Because cytoskeletal filaments are the most impor-
tant structural components in cells, a quantitative understanding of their mechan-
ical response to bending, stretching, and compression is crucial for any model of
the mechanics of networks of these filaments. We shall see how these fundamental
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Fig. 8-1. Entangled solution of semiflexible actin filaments. (A) In physiological conditions, individ-
ual monomeric actin proteins (G-actin) polymerize to form double-stranded helical filaments known
as F-actin. These filaments exhibit a polydisperse length distribution of up to 70 µm in length. (B)
A solution of 1.0 mg/ml actin filaments, approximately 0.03% of which have been labeled with
rhodamine-phalloidin in order to visualize them by florescence microscopy. The average distance
ξ between chains in this figure is approximately 0.3 µm. (Reprinted with permission from Mac-
Kintosh F C, Käs J, and Janmey P A, Physical Review Letters, 75 4425 (1995). Copyright 1995 by
the American Physical Society.

properties of the individual filaments can explain many of the properties of solutions
and networks.

Single-filament properties

The biopolymers that make up the cytoskeleton consist of aggregates of large globular
proteins that are bound together rather weakly, as compared with most synthetic,
covalently bonded polymers. Nevertheless, they can be surprisingly strong. The most
rigid of these are microtubules, which are hollow tube-like filaments that have a
diameter of approximately 20 nm. The most basic aspect determining the mechanical
behavior of cytoskeletal polymers on the cellular scale is their bending rigidity.

Even with this mechanical resistance to bending, however, cytoskeletal fila-
ments can still exhibit significant thermally induced bending fluctuations because of
Brownian motion in a liquid. Thus such filaments are said to be semiflexible or worm-
like. This is illustrated in Fig. 8-1, showing fluorescently labeled F-actin filaments
on the micrometer scale. The effect of the Brownian forces on the filament leads to
increasingly contorted shapes over larger-length segments. The length at which sig-
nificant bending fluctuations occur actually provides a simple yet quantitative charac-
terization of the mechanical stiffness of such polymers. This thermal bending length,
or persistence length �p, is defined in terms of the the angular correlations (for exam-
ple, of the local orientation along the polymer backbone), which decay exponentially
with a characteristic length �p. In simple terms, however, this just says that a typical
filament in thermal equilibrium in a liquid will appear rather straight over lengths
that are short compared with this persistence length, while it will begin to exhibit
a random, contorted shape only on longer-length scales. The persistence lengths of
a few important biopolymers are given in Table 8-1, along with their approximate
diameter and length.
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Table 8-1. Persistence lengths and other parameters of various biopolymers
(Howard, 2001; Gittes et al., 1993)

Type Approximate diameter Persistence length Contour length

DNA 2 nm 50 nm <∼1 m
F-actin 7 nm 17 µm <∼50 µm
Microtubule 25 nm ∼1–5 mm 10s of µm

The worm-like chain model

Rigid polymers can be thought of as elastic rods, except on a small scale. The me-
chanical description of these is essentially the same as for a macroscopic rod with
quantitative differences in parameters. The important role of thermal fluctuations,
however, introduces a qualitative difference from the macroscopic case. Because the
diameter of a filamentous protein is so much smaller than other length scales of inter-
est – and especially the cellular scale – it is often sufficient to think of a filament as
an idealized curve that resists bending. This is the essence of the so-called worm-like
chain model. This can be described by an energy of the form,

Hbend = κ

2

∫
ds

∣∣∣∣ ∂
�t

∂s

∣∣∣∣
2

, (8.1)

where κ is the bending modulus and �t is a (unit) tangent vector along the chain. The
variation (derivative) of the tangent is a measure of curvature, which appears here
quadratically because it is assumed that there is no preferred direction of curvature.
Here, the chain position �r (s) is described in terms of a coordinate s corresponding to
the length along the chain backbone. Hence, the tangent vector

�t = ∂�r
∂s

.

These quantities are illustrated in Fig. 8-2.
The bending modulus κ has units of energy times length. A natural energy scale

for a rod subject to Brownian fluctuations is kT , where T is the temperature and k
is Boltzmann’s constant. This is the typical kinetic energy of a molecule or particle.
The persistence length described above is simply given by �p = κ/(kT ), because the
fluctuations tend to decrease with stiffness κ and increase with temperature. As noted,
this is the typical length scale over which the polymer forgets its orientation, due to
the constant Brownian forces it experiences in a medium at finite temperature.

More precisely, for a homogeneous rod of diameter 2a consisting of a homogeneous
elastic material, the bending modulus should be proportional to the Young’s modulus
E . The Young’s modulus, or the stiffness of the material, has units of energy per
volume. Thus, on dimensional grounds, we expect that κ ∼ Ea4. In fact (Landau and
Lifshitz 1986),

κ = π

4
Ea4.

The prefactor in front of Ea4 depends on the geometry of the rod (in other words, its
cross-section). The factor πa4/4 is for a solid rod of radius a. For a hollow tube, such
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2a

s

t(s) Fig. 8-2. A filamentous protein can be regarded as an
elastic rod of radius a. Provided the length of the rod
is very long compared with the monomeric dimension a,
and that the rigidity is high (specifically, the persistence
length �p � a), this can be treated as an abstract line or
curve, characterized by the length s along its backbone.
A unit vector �t tangent to the filament defines the local
orientation of the filament. Curvature is present when this
orientation varies with s. For bending in a plane, it is suf-
ficient to consider the angle θ (s) that the filament makes
with respect to some fixed axis. The curvature is then
∂θ/∂s.

as one might use to model a microtubule, the prefactor would be different, but still
of order a4, where a is the (outer) radius. This is often expressed as κ = E I , where
I is the moment of inertia of the cross-section (Howard, 2001).

In general, for bending in 3D, there are two independent directions for deflections
of the rod or polymer transverse to its local axis. It is often instructive, however, to
consider a simpler case of a single transverse degree of freedom, in other words,
motion confined to a plane, as illustrated by Fig. 8-2. Here, the integrand in Eq. 8.1
becomes (∂θ/∂s)2, where θ (s) is simply the local angle that the chain axis makes
at point s, relative to any fixed axis. Using basic principles of statistical mechan-
ics (Grosberg and Khokhlov, 1994), one can calculate the thermal average angular
correlation between distant points along the chain, for which

〈cos[θ (s) − θ (s ′)]〉 � 〈cos (�θ )〉|s−s ′|/�s � e−|s−s ′|/2�p . (8.2)

As noted at the outset, so far this is all for motion confined to a plane. In three
dimensions, there is another direction perpendicular to the plane that the filament can
move in. This increases the rate of decay of the angular correlations by a factor of
two relative to the result above:

〈�t(s) · �t(s ′)〉 = e−|s−s ′|/�p , (8.3)

where �p is the same persistence length defined above. This is a general definition
of the persistence length, which also provides a purely geometric measure of the
mechanical stiffness of the rod, provided that it is in equilibrium at temperature
T . In principle, this means that one can measure the stiffness of a biopolymer by
simply examining its bending fluctuations in a microscope. In practice, however, it is
usually better to measure the amplitudes of a number of different bending modes (that
is, different wavelengths) in order to ensure that thermal equilibrium is established
(Gittes et al., 1993).

Force-extension of single chains

In order to understand how a network of filaments responds to mechanical loading, we
need to understand at least two things: the way a single filament responds to stress; and
the way in which the individual filaments are connected or otherwise interact with each
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other. We address the single-filament properties here, and reserve the characterization
of the way filaments interact for later.

A single filament can respond to forces in at least two ways. It can respond to
both transverse and longitudinal forces by either bending or stretching/compressing.
On length scales shorter than the persistence length, bending can be described in
mechanical terms, as for elastic rods. By contrast, stretching and compression can
involve both a purely elastic or mechanical response (again, as in the stretching,
compression, or even buckling of macroscopic elastic rods), as well as an entropic
response. The latter comes from the thermal fluctuations of the filament. Perhaps
surprisingly, as will be shown, the longitudinal response can be dominated by entropy
even on length scales small compared with the persistence length. Thus, it is incorrect
to think of a filament as truly rod-like, even on length scales short compared with �p.

The longitudinal single-filament response is often described in terms of a so-called
force-extension relationship. Here, the force required to extend the filament is mea-
sured or calculated in terms of the degree of extension along a line. At any finite
temperature, there is a resistance to such extension due to the presence of thermal
fluctuations that make the polymer deviate from a straight conformation. This has been
the basis of mechanical studies, for example, of long DNA (Bustamante et al., 1994).
In the limit of large persistence length, this can be calculated as follows (MacKintosh
et al., 1995).

We consider a filament segment of length � that is short compared with the persis-
tence length �p. It is then nearly straight, with small transverse fluctuations. We let the
x-axis define the average orientation of the chain segment, and let u and v represent
the two independent transverse degrees of freedom. These can then be thought of as
functions of x and time t in general. For simplicity, we shall mostly consider just one
of these coordinates, u(x, t). The bending energy is then

Hbend = κ

2

∫
dx

(
∂2u

∂x2

)2

= �

4

∑
q

κq4u2
q , (8.4)

where we have represented u(x) by a Fourier series

u(x, t) =
∑

q

uq sin(qx). (8.5)

As illustrated in Fig. 8-3, the local orientation of the filament is given by the slope
∂u/∂x , while the local curvature is given by the second derivative ∂2u/∂x2. Such a
description is appropriate for the case of a nearly straight filament with fixed boundary
conditions u = 0 at the ends, x = 0, �. For this case, the wave vectors q = nπ/�,
where n = 1, 2, 3,. . . .

We assume that the chain has no compliance in its contour length, in other words,
that the total arc length

∫
ds is unchanged by the fluctuations. As illustrated in Fig. 8-3,

for a nearly straight filament, the arc length ds of a short segment is approximately
given by

√
(dx)2 + (du)2 = dx

√
1 + |∂u/∂x |2. The contraction of the chain relative

to its full contour length in the presence of thermal fluctuations in u is then

�� =
∫

dx

(√
1 + |∂u/∂x |2 − 1

)
� 1

2

∫
dx |∂u/∂x |2 . (8.6)
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Fig. 8-3. From one fixed end, a filament tends to wander in a way that can be characterized by u(x),
the transverse displacement from an initial straight line (dashed). If the arc length of the filament is
unchanged, then the transverse thermal fluctuations result in a contraction of the end-to-end distance,
which is denoted by ��. In fact, this contraction is actually distributed about a thermal average value
〈��〉. The mean-square (longitudinal) fluctuations about this average are denoted by 〈δ�2〉, while
the mean-square lateral fluctuations (that is, with respect to the dashed line) are denoted by 〈u2〉.

The integration here is actually over the projected length of the chain. But, to leading
(quadratic) order in the transverse displacements, we make no distinction between
projected and contour lengths here, and above in Hbend.

Thus, the contraction

�� = �

4

∑
q

q2u2
q . (8.7)

Conjugate to this variable is the tension τ in the chain. Thus, we consider the effective
energy

H = 1

2

∫
dx

[
κ

(
∂2u

∂x2

)2

+ τ

(
∂u

∂x

)2
]

= �

4

∑
q

(κq4 + τq2)u2
q . (8.8)

Under a constant tension τ , therefore, the equilibrium amplitudes uq must satisfy

〈|uq |2
〉 = 2kT

� (κq4 + τq2)
, (8.9)

and the contraction

〈��〉 = kT
∑

q

1

(κq2 + τ )
. (8.10)

There are, of course, two transverse degrees of freedom, and so this last answer
incorporates a factor of two appropriate for a chain fluctuating in 3D.

Semiflexible filaments exhibit a strong suppression of bending fluctuations for
modes of wavelength less than the persistence length �p. More precisely, as we see
from Eq. 8.9 the mean-square amplitude of shorter wavelength modes are increasingly
suppressed as the fourth power of the wavelength. This has important consequences
for many of the thermal properties of such filaments. In particular, it means that the
longest unconstrained wavelengths tend to be dominant in most cases. This allows us,
for instance, to anticipate the scaling form of the end-to-end contraction �� between
points separated by arc length � in the absence of an applied tension. We note that it is a
length and it must vary inversely with stiffness κ and must increase with temperature.
Thus, as the dominant mode of fluctuations is that of the maximum wavelength, �, we
expect the contraction to be of the form 〈��〉0 ∼ �2/�p. More precisely, for τ = 0,

〈��〉0 = kT �2

κπ2

∞∑
n = 1

1

n2
= �2

6�p
. (8.11)
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Similar scaling arguments to those above lead us to expect that the typical transverse
amplitude of a segment of length � is approximately given by

〈u2〉 ∼ �3

�p
(8.12)

in the absence of applied tension. The precise coefficient for the mean-square ampli-
tude of the midpoint between ends separated by � (with vanishing deflection at the
ends) is 1/24.

For a finite tension τ , however, there is an extension of the chain (toward full
extension) by an amount

δ� = 〈��〉0 − 〈��〉τ = kT �2

κπ2

∑
n

φ

n2 (n2 + φ)
, (8.13)

where φ = τ�2/(κπ2) is a dimensionless force. The characteristic force κπ2/�2 that
enters here is the critical force in the classical Euler buckling problem (Landau and
Lifshitz, 1986). Thus, the force-extension curve can be found by inverting this rela-
tionship. In the linear regime, this becomes

δ� = �2

�pπ2
φ

∑
n

1

n4
= �4

90�pκ
τ, (8.14)

that is, the effective spring constant for longitudinal extension of the chain segment
is 90κ�p/�

4. The scaling form of this could also have been anticipated, based on very
simple physical arguments similar to those above. In particular, given the expected
dominance of the longest wavelength mode (�), we expect that the end-to-end contrac-
tion scales as δ� ∼ ∫

(∂u/∂x)2 ∼ u2/�. Thus, 〈δ�2〉 ∼ �−2〈u4〉 ∼ �−2〈u2〉2 ∼ �4/�2
p,

which is consistent with the effective (linear) spring constant derived above. The full
nonlinear force-extension curve can be calculated numerically by inversion of the
expression above. This is shown in Fig. 8-4. Here, one can see both the linear regime
for small forces, with the effective spring constant given above, as well as a diver-
gent force near full extension. In fact, the force diverges in a characteristic way, as
the inverse square of the distance from full extension: τ ∼ |δ� − ��|−2 (Fixman and
Kovac, 1973).

We have calculated only the longitudinal response of semiflexible polymers that
arises from their thermal fluctuations. It is also possible that such filaments will
actually lengthen (in arc length) when pulled on. This we can think of as a zero-
temperature or purely mechanical response. After all, we are treating semiflexible
polymers as little bendable rods. To the extent that they behave as rigid rods, we
might expect them to respond to longitudinal stresses by stretching as a rod. Based
on the arguments above, it seems that the persistence length �p determines the length
below which filaments behave like rods, and above which they behave like flexible
polymers with significant thermal fluctuations. Perhaps surprisingly, however, even
for semiflexible filament segments as short as � ∼ 3

√
a2�p, which is much shorter than

the persistence length, their longitudinal response can be dominated by the entropic
force-extension described above, that is, in which the response is due to transverse
thermal fluctuations (Head et al., 2003b).
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Fig. 8-4. The dimensionless force φ as a function of extension δ�, relative to maximum extension
��. For small extension, the response is linear.

Dynamics of single chains

The same Brownian forces that give rise to the bent shapes of filaments such as in
Fig. 8.1 also govern the dynamics of these fluctuating filaments. Both the relaxation
dynamics of bent filaments, as well as the dynamic fluctuations of individual chains
exhibit rich behavior that can have important consequences even at the level of bulk
solutions and networks. The principal dynamic modes come from the transverse
motion, that is, the degrees of freedom u and v above. Thus, we must consider time
dependence of these quantities. The transverse equation of motion of the chain can
be found from Hbend above, together with the hydrodynamic drag of the filaments
through the solvent. This is done via a Langevin equation describing the net force per
unit length on the chain at position x ,

0 = −ζ
∂

∂t
u(x, t) − κ

∂4

∂x4
u(x, t) + ξ⊥(x, t), (8.15)

which is, of course, zero within linearized, inertia-free (low Reynolds number) hy-
drodynamics that we assume here.

Here, the first term represents the hydrodynamic drag per unit length of the fil-
ament. We have assumed a constant transverse drag coefficient that is independent
of wavelength. In fact, given that the actual drag per unit length on a rod of length
L is ζ = 4πη/ln (AL/a), where L/a is the aspect ratio of the rod, and A is a con-
stant of order unity that depends on the precise geometry of the rod. For a filament
fluctuating freely in solution, a weak logarithmic dependence on wavelength is thus
expected. In practice, the presence of other chains in solution gives rise to an effective
screening of the long-range hydrodynamics beyond a length of order the separation
between chains, which can then be taken in place of L above. The second term in the
Langevin equation above is the restoring force per unit length due to bending. It has
been calculated from −δHbend/δu(x, t) with the help of integration by parts. Finally,
we include a random force ξ⊥ that accounts for the motion of the surrounding fluid
particles.
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A simple force balance in the Langevin equation above leads us to conclude that
the characteristic relaxation rate of a mode of wavevector q is (Farge and Maggs,
1993)

ω(q) = κq4/ζ. (8.16)

The fourth-order dependence of this rate on q is to be expected from the appearance of
a single time derivative along with four spatial derivatives in Eq. 8.15. This relaxation
rate determines, among other things, the correlation time for the fluctuating bending
modes. Specifically, in the absence of an applied tension,

〈uq (t)uq (0)〉 = 2kT

�κq4
e−ω(q)t . (8.17)

That the relaxation rate varies as the fourth power of the wavevector q has important
consequences. For example, while the time it takes for an actin filament bending mode
of wavelength 1 µm to relax is of order 10 ms, it takes about 100 s for a mode of
wavelength 10 µm. This has implications, for instance, for imaging of the thermal
fluctuations of filaments, as is done in order to measure �p and the filament stiffness
(Gittes et al., 1993). This is the basis, in fact, of most measurements to date of the
stiffness of DNA, F-actin, and other biopolymers. Using Eq. 8.17, for instance, one
can both confirm thermal equilibrium and determine �p by measuring the mean-
square amplitude of the thermal modes of various wavelengths. However, in order
both to resolve the various modes as well as to establish that they behave according
to the thermal distribution, one must sample over times long compared with 1/ω(q)
for the longest wavelengths λ ∼ 1/q. At the same time, one must be able to resolve
fast motion on times of order 1/ω(q) for the shortest wavelengths. Given the strong
dependence of these relaxation times on the corresponding wavelengths, for instance,
a range of order a factor of 10 in the wavelengths of the modes corresponds to a range
of 104 in observation times.

Another way to look at the result of Eq. 8.16 is that a bending mode of wavelength
λ relaxes (that is, fully explores its equilibrium conformations) in a time of order
ζλ4/κ . Because it is also true that the longest (unconstrained) wavelength bending
mode has by far the largest amplitude, and thus dominates the typical conformations
of any filament (see Eqs. 8.10 and 8.17), we can see that in a time t , the typical or
dominant mode that relaxes is one of wavelength �⊥(t) ∼ (κt/ζ )1/4. As we have seen
above in Eq. 8.12, the mean-square amplitude of transverse fluctuations increases
with filament length � as 〈u2〉 ∼ �3/�p. Thus, in a time t , the expected mean-square
transverse motion is given by (Farge and Maggs, 1993; Amblard et al., 1996)

〈u2(t)〉 ∼ (�⊥(t))3 /�p ∼ t3/4, (8.18)

because the typical and dominant mode contributing to the motion at time t is of
wavelength �⊥(t). Equation 8.18 represents what can be called subdiffusive motion
because the mean-square displacement grows less strongly with time than for diffusion
or Brownian motion. Motion consistent with Eq. 8.18 has been observed in living
cells, by tracking small particles attached to microtubules (Caspi et al., 2000). Thus,
in some cases, the dynamics of cytoskeletal filaments in living cells appear to follow
the expected motion for transverse equilibrium thermal fluctuations in viscous fluids.
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The dynamics of longitudinal motion can be calculated similarly. It is found that
the means-square amplitude of longitudinal fluctuations of filament of length � are
also governed by (Granek, 1997; Gittes and MacKintosh, 1998)

〈δ�(t)2〉 ∼ t3/4, (8.19)

where this mean-square amplitude is smaller than for the transverse motion by a
factor of order �/�p. Thus, both for the short-time fluctuations as well as for the static
fluctuations of a filament segment of length �, a filament end explores a disk-like
region with longitudinal motion smaller than perpendicular motion by this factor.
Although the amplitude of longitudinal motion is smaller than for transverse, the
longitudinal motion of Eq. 8.19 can explain the observed high-frequency viscoelastic
response of solutions and networks of biopolymers, as discussed below.

Solutions of semiflexible polymer

Because of their inherent rigidity, semiflexible polymers interact with each other
in very different ways than flexible polymers would, for example, in solutions of
the same concentration. In addition to the important characteristic lengths of the
molecular dimension (say, the filament diameter 2a), the material parameter �p, and
the contour length of the chains, there is another important new length scale in a
solution – the mesh size, or typical spacing between polymers in solution, ξ . This
can be estimated as follows in terms of the molecular size a and the polymer volume
fraction φ (Schmidt et al., 1989). In the limit that the persistence length �p is large
compared with ξ , we can approximate the solution on the scale of the mesh as one
of rigid rods. Hence, within a cubical volume of size ξ , there is of order one polymer
segment of length ξ and cross-section a2, which corresponds to a volume fraction φ

of order (a2ξ )/ξ 3. Thus,

ξ ∼ a/
√

φ. (8.20)

This mesh size, or spacing between filaments, does not completely characterize
the way in which filaments interact, even sterically with each other. For a dilute
solution of rigid rods, it is not hard to imagine that one can embed a long rigid rod
rather far into such a solution before touching another filament. A true estimate of the
distance between typical interactions (points of contact) of semiflexible polymers must
account for their thermal fluctuations (Odijk, 1983). As we have seen, the transverse
range of fluctuations δu a distance � away from a fixed point grows according to
δu2 ∼ �3/�p. Along this length, such a fluctuating filament explores a narrow cone-
like volume of order �δu2. An entanglement that leads to a constraint of the fluctuations
of such a filament occurs when another filament crosses through this volume, in which
case it will occupy a volume of order a2δu, as δu 
 �. Thus, the volume fraction
and the contour length � between constraints are related by φ ∼ a2/(�δu). Taking
the corresponding length as an entanglement length, and using the result above for
δu = √

δu2, we find that

�e ∼ (
a4�p

)1/5
φ−2/5, (8.21)

which is larger than the mesh size ξ in the semiflexible limit �p � ξ .
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These transverse entanglements, separated by a typical length �e, govern the elas-
tic response of solutions, in a way first outlined in Isambert and Maggs (1996). A
more complete discussion of the rheology of such solutions can be found in Morse
(1998b) and Hinner et al. (1998). The basic result for the rubber-like plateau shear
modulus for such solutions can be obtained by noting that the number density of
entropic constraints (entanglements) is thus n�/�c ∼ 1/(ξ 2�e), where n = φ/(a2�) is
the number density of chains of contour length �. In the absence of other energetic
contributions to the modulus, the entropy associated with these constraints results in
a shear modulus of order G ∼ kT/(ξ 2�e) ∼ φ7/5. This has been well established in
experiments such as those of Hinner et al. (1998).

With increasing frequency, or for short times, the macroscopic shear response of
solutions is expected to show the underlying dynamics of individual filaments. One
of the main signatures of the frequency response of polymer solutions in general is
an increase in the shear modulus with increasing frequency. This is simply because
the individual filaments are not able to fully relax or explore their conformations on
short times. In practice, for high molecular weight F-actin solutions of approximately
1 mg/ml, this frequency dependence is seen for frequencies above a few Hertz. Initial
experiments measuring this response by imaging the dynamics of small probe particles
have shown that the shear modulus increases as G(ω) ∼ ω3/4 (Gittes et al., 1997;
Schnurr et al., 1997), which has since been confirmed in other experiments and by
other techniques (for example, Gisler and Weitz, 1999).

If, as noted above, this increase in stiffness with frequency is due to the fact that
filaments are not able to fully fluctuate on the correspondingly shorter times, then
we should be able to understand this more quantitatively in terms of the dynamics
described in the previous section. In particular, this behavior can be understood in
terms of the longitudinal dynamics of single filaments (Morse, 1998a; Gittes and Mac-
Kintosh, 1998). Much as the static longitudinal fluctuations 〈δ�2〉 ∼ �4/�2

p correspond
to an effective longitudinal spring constant ∼ kT �2

p/�
4, the time-dependent longitudi-

nal fluctuations shown above in Eq. 8.19 correspond to a time- or frequency-dependent
compliance or stiffness, in which the effective spring constant increases with increas-
ing frequency. This is because, on shorter time scales, fewer bending modes can relax,
which makes the filament less compliant. Accounting for the random orientations of
filaments in solution results in a frequency-dependent shear modulus

G(ω) = 1

15
ρκ�p (−2iζ/κ)3/4 ω3/4 − iωη, (8.22)

where ρ is the polymer concentration measured in length per unit volume.

Network elasticity

In a living cell, there are many different specialized proteins for binding, bundling,
and otherwise modifying the network of filamentous proteins. Many tens of actin-
associated proteins alone have been identified and studied. Not only is it important
to understand the mechanical roles of, for example, cross-linking proteins, but as we
shall see, these can have a much more dramatic effect on the network properties than
is the case for flexible polymer solutions and networks.
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The introduction of cross-linking agents into a solution of semiflexible filaments
introduces yet another important and distinct length scale, which we shall call the
cross-link distance �c. As we have just seen, in the limit that �p � ξ , individual
filaments may interact with each other only infrequently. That is to say, in contrast
with flexible polymers, the distance between interactions of one polymer with its
neighbors (�e in the case of solutions) may be much larger than the typical spacing
between polymers. Thus, if there are biochemical cross-links between filaments, these
may result in significant variation of network properties even when �c is larger than ξ .

Given a network of filaments connected to each other by cross-links spaced an
average distance �c apart along each filament, the response of the network to macro-
scopic strains and stresses may involve two distinct single-filament responses: (1)
bending of filaments; and (2) stretching/compression of filaments. Models based on
both of these effects have been proposed and analyzed. Bending-dominated behavior
has been suggested both for ordered (Satcher and Dewey, 1996) and disordered (Kroy
and Frey, 1996) networks. That individual filaments bend under network strain is per-
haps not surprising, unless one thinks of the case of uniform shear. In this case, only
rotation and stretching or compression of individual rod-like filaments are possible.
This is the basis of so-called affine network models (MacKintosh et al., 1995), in
which the macroscopic strain falls uniformly across the sample. In contrast, bending
of constituents involves (non-affine deformations, in which the state of strain varies
from one region to another within the sample.

We shall focus mostly on random networks, such as those studied in vitro. It has
recently been shown (Head et al., 2003a; Wilhelm and Frey, 2003; Head et al., 2003b)
that which of the affine or non-affine behaviors is expected depends, for instance, on
filament length and cross-link concentration. Non-affine behavior is expected either
at low concentrations or for short filaments, while the deformation is increasingly
affine at high concentration or for long filaments. For the first of these responses, the
network shear modulus (Non-Affine) is expected to be of the form

GNA ∼ κ/ξ 4 ∼ φ2 (8.23)

when the density of cross-links is high (Kroy and Frey 1996). This quadratic de-
pendence on filament concentration c is also predicted for more ordered networks
(Satcher and Dewey 1996).

For affine deformations, the modulus can be estimated using the effective single-
filament longitudinal spring constant for a filament segment of length �c between
cross-links, ∼κ�p/�

4
c , as derived above. Given an area density of 1/ξ 2 such chains

passing through any shear plane (see Fig. 8-5), together with the effective tension of
order (κ�p/�

3
c)ε, where ε is the strain, the shear modulus is expected to be

GAT ∼ κ�p

ξ 2�3
c

. (8.24)

This shows that the shear modulus is expected to be strongly dependent on the
density of cross-links. Recent experiments on in vitro model gels consisting of F-actin
with permanent cross-links, for instance, have shown that the shear modulus can vary
from less than 1 Pa to over 100 Pa at the same concentration of F-actin, by varying
the cross-link concentration (Gardel et al., 2004).
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Stress θσ G=

2/1−≈ Acξ

c

Fig. 8-5. The macroscopic shear stress σ depends on the mean tension in each filament, and on the
area density of such filaments passing any plane. There are on average 1/ξ 2 such filaments per unit
area. This gives rise to the factor ξ−2 in both Eqs. 8.24 and 8.25. The macroscopic response can also
depend strongly on the typical distance �c between cross-links, as discussed below.

In the preceding derivation we have assumed a thermal/entropic (Affine and
Thermal) response of filaments to longitudinal forces. As we have seen, however,
for shorter filament segments (that is, for small enough �c), one may expect a me-
chanical response characteristic of rigid rods that can stretch and compress (with a
modulus µ). This would lead to a different expression (Affine, Mechanical) for the
shear modulus

GAM ∼ µ

ξ 2
∼ φ, (8.25)

which is proportional to concentration. The expectations for the various mechanical
regimes is shown in Fig. 8.6 (Head et al., 2003b).

Nonlinear response

In contrast with most polymeric materials (such as gels and rubber), most biologi-
cal materials, from the cells to whole tissues, stiffen as they are strained even by a
few percent. This nonlinear behavior is also quite well established by in vitro studies
of a wide range of biopolymers, including networks composed of F-actin, colla-
gen, fibrin, and a variety of intermediate filaments (Janmey et al., 1994; Storm et al.,
2005). In particular, these networks have been shown to exhibit approximately ten-fold

polymer concentration

solution

NA

AT

AM

cr
os

sl
in

k 
co

nc
en

tr
at

io
n

Fig. 8-6. A sketch of the expected diagram showing the
various elastic regimes in terms of cross-link density and
polymer concentration. The solid line represents the rigid-
ity percolation transition where rigidity first develops from
a solution at a macroscopic level. The other, dashed lines
indicate crossovers (not thermodynamic transitions). NA
indicates the non-affine regime, while AT and AM refer to
affine thermal (or entropic) and mechanical, respectively.
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Fig. 8-7. The differential modulus K ′ = dσ/dγ describes the increase in the stress σ with strain
γ in the nonlinear regime. This was measured for cross-linked actin networks by small-amplitude
oscillations at low frequency, corresponding to a nearly purely elastic response, after applying a
constant prestress σ0. This was measured for four different concentrations represented by the various
symbols. For small prestress σ0, the differential modulus K ′ is nearly constant, corresponding to a
linear response for the network. With increasing σ0, the network stiffens, in a way consistent with
theoretical predictions (MacKintosh et al., 1995; Gardel et al., 2004), as illustrated by the various
theoretical curves. Specifically, it is expected that in the strongly nonlinear regime, the stiffening
increases according to the straight line, corresponding to dσ/dγ ∼ σ 3/2. Data taken from Gardel
et al., 2004.

stiffening under strain. Thus these materials are compliant, while being able to with-
stand a wide range of shear stresses.

This strain-stiffening behavior can be understood in simple terms by looking at
the characteristic force-extension behavior of individual semiflexible filaments, as
described above. As can be seen in Fig. 8-4, for small extensions or strains, there
is a linear increase in the force. As the strain increases, however, the force is seen
to grow more rapidly. In fact, in the absence of any compliance in the arc length of
the filament, the force strictly diverges at a finite extension. This suggests that for a
network, the macroscopic stress should diverge, while in the presence of high stress,
the macroscopic shear strain is bounded and ceases to increase. In other words, after
being compliant at low stress, such a material will be seen to stop responding, even
under high applied stress.

This can be made more quantitative by calculating the macroscopic shear stress
of a strained network, including random orientations of the constituent filaments
(MacKintosh et al., 1995; Kroy and Frey, 1996; Gardel et al., 2004; Storm et al.,
2005). Specifically, for a given shear strain γ , the tension in a filament segment of
length �c is calculated, based on the force-extension relation above. This is done within
the (affine) approximation of uniform strain, in which the microscopic strain on any
such filament segment is determined precisely by the macroscopic strain and the
filament’s orientation with respect to the shear. The contribution of such a filament’s
tension to the macroscopic stress, in other words, in a horizontal plane in Fig. 8.5,
also depends on its orientation in space. Finally, the concentration or number density
of such filaments crossing this horizontal plane is a function of the overall polymer
concentration, and the filament orientation.



P1: JZZ
CUFX003-Ch08 CUFX003/Kamm 0 521 84637 0 June 23, 2006 9:3

Polymer-based models of cytoskeletal networks 167

The full nonlinear shear stress is calculated as a function of γ , the polymer con-
centration, and �c, by adding all such contributions from all (assumed random) orien-
tations of filaments. This can then be compared with macroscopic rheological studies
of cross-linked networks, such as done recently by Gardel et al. (2004). These ex-
periments measured the differential modulus, dσ/dγ versus applied stress σ , and
found good agreement with the predicted increase in this modulus with increasing
stress (Fig. 8-7). In particular, given the quadratic divergence of the single-filament
tension shown above (Fixman and Kovac, 1973), this modulus is expected to increase
as dσ/dγ ∼ σ 3/2, which is consistent with the experiments by Gardel et al. (2004).
This provides a strong test of the underlying mechanism of network elasticity.

In addition to good agreement between theory and experiment for densely
cross-linked networks, these experiments have also shown evidence of a lack of
strain-stiffening behavior of these networks at lower concentrations (of polymer or
cross-links), which may provide evidence for a non-affine regime of network response
described above.

Discussion

Cytoskeletal filaments play key mechanical roles in the cell, either individually (for
example, as paths for motor proteins) or in collective structures such as networks.
The latter may involve many associated proteins for cross-linking, bundling, or cou-
pling the cytoskeleton to other cellular structures like membranes. Our knowledge
of the cytoskeleton has improved in recent years through the development of new
experimental techniques, such as in visualization and micromechanical probes in
living cells. At the same time, combined experimental and theoretical progress on in
vitro model systems has provided fundamental insights into the possible mechanical
mechanisms of cellular response.

In addition to their role in cells, cytoskeletal filaments have also proven remarkable
model systems for the study of semiflexible polymers. Their size alone makes it
possible to visualize individual filaments directly. They are also unique in the extreme
separation of two important lengths, the persistence length �p and the size of a single
monomer. In the case of F-actin, �p is more than a thousand times the size of a
single monomer. This makes for not only quantitative but also qualitative differences
from most synthetic polymers. We have seen, for instance, that the way in which
semiflexible polymers entangle is very different. This makes for a surprising variation
of the stiffness of these networks with only changes in the density of cross-links, even
at the same concentration.

In spite of the molecular complexity of filamentous proteins as compared with
conventional polymers, a quantitative understanding of the properties of single fila-
ments provides a quantitative basis for modeling solutions and networks of filaments.
In fact, the macroscopic response of cytoskeletal networks quite directly reflects, for
example, the underlying dynamics of an individual semiflexible chain fluctuating in
its Brownian environment. This can be seen, for instance in the measured dynamics
of microtubules in cells (Caspi et al., 2000).

In developing our current understanding of cytoskeletal networks, a crucial role has
been played by in vitro model systems, such as the one in Fig. 8-1. Major challenges,
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however, remain for understanding the cytoskeleton of living cells. In the cell, the
cytoskeleton is hardly a passive network. Among other differences from the model
systems studied to date is the presence of active contractile or force-generating ele-
ments such as motors that work in concert with filamentous proteins. Nevertheless,
in vitro models may soon permit a systematic and quantitative study of various actin-
associated proteins for cross-linking and bundling (Gardel et al., 2004), and even
contractile elements such as motors.
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