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� Three fundamental cytoskeletal filaments
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Actin Microtubules (MT)    Intermediate Filaments (IF)



� Random coiling of polymer 

filaments 

� Cross-linking between 

filaments (black dots)

Entropic Spring F
F
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� Entropic Spring

� Stretching force cause order in 

filaments

� Reduces entropy

� Generates of heat

� (What if you add heat back in?)
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� Consider four-segment polymer

� There are 16 unique configuration states
� S ≈ ln(16) = 2.77
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� S ≈ ln(16) = 2.77

� There tension is applied such that there cannot be 
zero separation from end-to-end
� S ≈ ln(10) = 2.30

� Therefore, tension reduces entropy



� Entropic stiffness is proportional to temperature

5



� Simply, filaments in thermal equilibrium in a 
liquid solution will appear
� Straight over lengths < lp

� Contorted randomly over lengths >  lp
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� In vitro solution measurements:
� DNA: 50 nm

� F-actin: 17 µm

� Microtubule: 1 mm

Hi  lp Lo  lp



� Formally, 

where

κ = EYI is bending stiffness
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κ = EYI is bending stiffness

k = 1.38 x 10-23 J/K is Boltzmann constant

T is temperature in K



� Applied forces lead to moment  M in rod 

� M acts to deforms straight shape to curved 

� Strain Energy
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� Strain Energy per volume

� By Hooke’s Law
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� Interior bending lengths
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� Strain
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� Thus…



� Strain energy per unit length
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� Energy can be described as 
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� Radius of curvature 
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� We can express as 
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� Or
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� Tension to extend filament measured by amount 

of extension along a line

∆l
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� Extension response dominated by entropy

� At any finite temperature, there is contraction 

due to thermal fluctuations that make polymer 

deviate from straight line

∆l



� Semiflexible chain stretched by tension τ

� Energy of bending Hbend

� Energy of contraction against τ

� Derive the “shortening” in the filament:
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� Derive the “shortening” in the filament:

Length is unchanged by kT, τ
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� Strain energy from stretching

Thus, total energy
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� Thus, total energy

� Note, there exists transverse motion direction version
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� It can be shown …

� Transverse spring constant

� Longitudinal spring constant
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� Longitudinal spring constant

� For l < lp , longitudinal compliance is smaller than 
transverse  
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� It can be shown 

� Considering the balance with thermal energy

� Adding transverse motion direction, and

� Utilizing statistical mechanics concepts
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with dimensionless force
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� Non-linear behavior

� Linear at small force

� Strain stiffening at large forces
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� Solution of polymers have mesh size dimension ξ
� Typical spacing between filaments

� Estimated by volume fraction ψ

� For rigid rods (lengths < lp)

ξ
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� Accounting for thermal fluctuations
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� It can be shown that for entropy only

� Temperature dependence
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� Temperature dependence

� Filament density dependence



� High frequency testing

� Filaments not able to relax from high bending modes

� Increased stiffness from less compliant filaments

( )
3/4 3/41

( ) 2G l i iω ρκ ζ κ ω ωη= − −
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ρ is polymer concentration, ζ is hydrodynamic drag (per 

unit length) , η is viscosity
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� Consider cross-linking distance lc
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� Deformation types

� Affine network models: uniform rotation or stretching

� Non-affine models: macroscopic strains vary from one 

region to another



� Affine, thermal-entropic (AT)

� Modulus depends strongly on x-linking 

� Non-affine (NA)
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NA
G κ ξ ψ∼ ∼
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� Non-affine (NA)

� Low poly conc, high x-linking (low lc)

� Affine, mechanical (AM)

� Filament segments (small lc) behave as rigid rods with modulus µ
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