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Mechanical properties of living cells are commonly described in terms of the laws of continuum
mechanics. The purpose of this report is to consider the implications of an alternative approach that
emphasizes the discrete nature of stress bearing elements in the cell and is based on the known structural
properties of the cytoskeleton. We have noted previously that tensegrity architecture seems to capture
essential qualitative features of cytoskeletal shape distortion in adherent cells (Ingber, 1993a; Wang
et al., 1993). Here we extend those qualitative notions into a formal microstructural analysis. On the
basis of that analysis we attempt to identify unifying principles that might underlie the shape stability
of the cytoskeleton. For simplicity, we focus on a tensegrity structure containing six rigid struts
interconnected by 24 linearly elastic cables. Cables carry initial tension (‘‘prestress’’) counterbalanced
by compression of struts. Two cases of interconnectedness between cables and struts are considered:
one where they are connected by pin-joints, and the other where the cables run through frictionless loops
at the junctions. At the molecular level, the pinned structure may represent the case in which different
cytoskeletal filaments are cross-linked whereas the looped structure represents the case where they are
free to slip past one another. The system is then subjected to uniaxial stretching. Using the principal
of virtual work, stretching force vs. extension and structural stiffness vs. stretching force relationships
are calculated for different prestresses. The stiffness is found to increase with increasing prestress and,
at a given prestress, to increase approximately linearly with increasing stretching force. This behavior
is consistent with observations in living endothelial cells exposed to shear stresses (Wang & Ingber,
1994). At a given prestress, the pinned structure is found to be stiffer than the looped one, a result
consistent with data on mechanical behavior of isolated, cross-linked and uncross-linked actin networks
(Wachsstock et al., 1993). On the basis of our analysis we concluded that architecture and the prestress
of the cytoskeleton might be key features that underlie a cell’s ability to regulate its shape.
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Introduction

Mechanical stresses on cells, such as those imposed by
hemodynamic forces, gravity or cell-generated ten-
sion, are known to regulate tissue growth and
development and to alter cell form and function
(Ingber, 1991; Davis & Tripathi, 1993). For example,
when adherent endothelial cells are exposed to
flow-induced shear stresses, the cytoskeleton (CSK)

undergoes major structural reorganization, the
topological profile of cell height changes, ion channels
become activated, acetylcholine and substance P are
released, and changes in gene expression occur (Davis
& Tripathi, 1993). Since many elements of the cell’s
metabolic machinery appear to be immobilized on
insoluble support scaffolds, changes in cell function
may result from CSK remodeling and structural
rearrangement (Ingber, 1993b). As such, the mechan-
ical basis of CSK deformability becomes of central
interest.
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The standard approach in cell mechanics is based
upon the continuum hypothesis. It views the cell as a
continuous elastic cortical shell surrounding a
continuous viscous or viscoelastic core (cf. Elson,
1988; Evans & Yeung, 1989; Fung & Liu, 1993).
Shape distortion of the cell is assumed to result
primarily from stresses distributed over the cell
membrane and transmitted throughout the cytoplasm
following the laws of continuum mechanics. This view
of CSK deformability has been fruitful. The
continuum hypothesis rests on the premise that a scale
which is small compared with the cell, but large
compared with the distance between microstructural
elements, the microstructure itself need not be taken
into account explicitly. The physical attributes (mass,
force, stiffness, strain energy, friction) and defor-
mation within a given small volume are assumed to be
spread continuously throughout that volume rather
than being concentrated in a small fraction of it.

The purpose of this report is to consider the
implications of an alternative viewpoint that empha-
sizes the discrete nature of stress bearing elements in
the cell and is based on known properties of the CSK.
Our rationale is as follows. In contrast to the
continuum perspective, it is now firmly established
that force transmission between the cell and the
extracellular milieu occurs at focal adhesion sites and
is mediated by specific trans-membrane receptors,
such as integrins, that form discrete molecular bridges
that interlink intracellular CSK filaments with
extracellular matrix anchoring scaffolds (Ingber,
1991; Schiro et al., 1992; Schmidt et al., 1993; Wang
et al., 1993; Scott-Burden, 1994). It is also well
established on structural grounds that the CSK is an
interconnected lattice comprised of discrete microfila-
ments, microtubules, and intermediate filaments (cf.
Amos & Amos, 1991; Ingber, 1993a). Although much
is known about the molecular constituents of the
adhesion complexes and the CSK matrix, there is little
understanding of how these components are orga-
nized architecturally or how they act to resist shape
distortion. To our knowledge, no attention has been
focused on the issue of the degree to which
deformation of this lattice might conform to the
tenets of the continuum hypothesis or on the
implications of departures therefrom.

We have previously noted that eukaryotic cells
display both CSK structure and elastic deformability
that appear to be consistent with so-called tensegrity
(tensional integrity) architecture as first described by
Buckminster Fuller (Fuller, 1961; Ingber & Jamieson,
1985; Ingber, 1993a; Wang et al., 1993; Ingber et al.,
1994). In its simplest representation, Pugh (1976)
defined tensegrity structures as the interaction of a set

of discontinuous (isolated) compression elements
(e.g., struts) with a set of continuous tension elements
(e.g., cables) in the aim to provide a stable volume and
shape in the space. The tension elements carry
‘‘prestress’’ (i.e., initial stress), conferring load-
supporting capability to the entire structure. The role
of the compression elements is to provide prestress
in the tension elements. Together, they form a self-
equilibrating, stable mechanical system.

A distinguishing characteristic of the tensegrity
structure is that in order to express a resistance to
distortion of shape it requires a prestress in its
members even before the external load is applied.
Examples of tensegrity structures in nature include
spider webs, gas-liquid foams, plant leaves, and
mammalian lungs. In the case of foams, leaves, and
lungs the prestress is provided by the pressure of the
inflating fluid (the compression element in lieu of rigid
struts), and is carried by lattice tension elements (e.g.,
liquid films in foams). In the case of spider webs, the
prestress is provided by discrete attachments to
surrounding objects, such as tree branches, and is
balanced by tension in web threads. Even though they
are external to the web itself, the tree branches may
be viewed as the compression elements in a tensegrity
structure, because they are an integral part of the
mechanically stable whole. In the absence of the
prestress, the intrinsic resistance to shape distortion is
lacking in these structures because their internal
degrees of freedom of motion are not fully
constrained. In the presence of a prestress, however,
the structural elements move relative to one another
until they attain a configuration which provides
equilibrium between external shear forces and those
carried by the structural elements. The larger the
initial forces carried by those elements (i.e., the larger
the prestress), the smaller the deformation those
structures would undergo at a given shear stress
before they attain a new equilibrium configuration.

A key feature of any tensegrity structure is the
interconnectedness of its elements, i.e., the manner in
which structural elements are mutually connected and
the degree of relative motion between interconnecting
elements at their junctions. For example, interconnec-
tion between liquid films in foams is such that at
equilibrium surface forces carried by those films are
equal. This type of interconnectedness yields minimal
shear stiffness (Stamenović, 1991).

It is likely that the CSK together with the
extracellular matrix form a tensegrity structure
(Ingber, 1993a; Ingber et al., 1994). For example, the
regions of extracellular matrix that stretch between
focal contacts represent local compression-resistant
elements which resist the tension exerted by
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stress-fibers inside the cell (Harris et al., 1980; Ingber,
1993a). Within the CSK of living cells, microtubule
bundles act as compression-resistant struts and
stabilize cell shape by resisting the pull of the
contractile actin lattice (Joshi et al., 1985; Dennerll
et al., 1988; Danowski, 1989; Kolodney & Wysolmer-
ski, 1992; Heidemann & Buxbaum, 1994).

Model structures built of sticks and elastic strings
according to the rules of tensegrity architecture
qualitatively mimic many of the phenomena that have
been observed in living cells including the effects of
substrate adhesion on cell shape, cell polarity, and
CSK remodeling (Ingber & Jamieson, 1985; Ingber,
1993a; Ingber et al., 1994). These tensegrity structures
also exhibit a nearly linear dependence between the
stiffness of the entire structure and the applied stress,
over a wide range of stresses (Wang et al., 1993).
Importantly, this peculiar ‘‘linear stiffening’’ response
appears to be a fundamental property of living cells
(Wang et al., 1993; Wang & Ingber, 1994) as well as
tissues (cf. Fung, 1981). While the characteristic linear
stiffening can be predicted by empirical relationships
(Mow et al., 1992) or phenomenological models
(Frisén et al., 1969), these approaches have not been
able to explain the observed phenomena based on first
principles (McMahon, 1984).

In the sections below we extend these qualitative
notions into a formal microstructural analysis. On the
basis of that analysis we attempt to identify unifying
principles that might underlie shape stability of the
CSK. For simplicity, we focus on a tensegrity
structure containing six rigid struts interconnected by
24 linearly elastic cables; such a simple tensegrity
structure embodies the same essential features
observed in structures with different arrangements
and numbers of structural elements as well as in
hierarchical arrangements of different sized tensegrity
arrays. Most importantly, we do not view this
six-strut structure as a direct, one-to-one model of
some part of the CSK. Rather, it is a plausible
description of the mechanisms that regulate cell shape
stability for which a quantitative basis has been
lacking in the past. The six-strut tensegrity structure
was subjected to uniaxial stretching and correspond-
ing force vs. extension relationships were calculated
for different prestresses and for different types of
interconnectedness of structural elements, starting
from first principles of mechanics. This approach
elucidates how simple tensegrity structures naturally
come to express many of the seemingly complex
behaviors observed in living cells exposed to shearing
forces. This does not at all preclude the numerous
chemically mediated mechanisms which are known to
regulate CSK filament assembly. Rather, it elucidates

a higher level of organization in which biochemical
remodeling events function and also may be
regulated.

Method

     

The CSK is assumed to be organized as a tensegrity
structure (Ingber & Jamieson, 1985; Ingber et al.,
1994). Thus, to simplify our approach, a six-strut
tensegrity structure (Fig. 1) was considered as a first
step in implementing tensegrity architecture in studies
of cell mechanics.

The six-strut tensegrity structure is composed of 24
cable segments and six struts. In this study, the cables
are viewed as elastic elements which support only
tension forces whereas the struts are viewed as rigid
bars under compression. The struts are slender and
support no lateral load. At the reference (initial) state,
compression forces in the struts balance tension forces
in the cables. The initial tension is referred to as a
prestress. Within the CSK, microfilaments and
intermediate filaments may play the role of cables

F. 1. Six-strut tensegrity model. Struts: AA, A 'A ', BB, B 'B ',
CC, C 'C '; cables: AB, AC, BC, A 'B, A 'C, B 'C, AB ', AC ', BC ',
A 'B ', A 'C ', B 'C '. Pulling forces of magnitude T/2 (not shown) are
applied at each end of struts AA and A 'A ', along the Ox-axis. The
resultant stretching force T is indicated by the thick arrows.
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whereas microtubules or cross-linked actin bundles
may play the role of struts (Ingber, 1993a).

The origin O of a rectangular Cartesian coordinate
system Oxyz is placed at the center of the structure,
with the Ox-axis parallel to the struts CC and C 'C ',
Oy-axis parallel to the struts AA and A 'A ', Oz-axis
parallel to the struts BB and B 'B ' (Fig. 1).

 

For convenience, the struts are assumed to be of
unit length. Thus, at the reference state the length of
each cable segment is l0 =z0.375 and the distance
between parallel struts s0 =0.5 (Kenner, 1976).

The structure is stretched in the direction of the
Ox-axis (axial direction) by pulling the struts AA and
A 'A 'apart by forces of magnitude T/2 applied at each
endpoint of these two struts. The resultant pulling
(stretching) force is, therefore, T (Fig. 1). This causes
changes in the distances between the pairs of parallel
struts from s0 to: sx for the struts AA and A 'A ', sy for
the struts BB and B 'B ', and sz for the struts CC and
C 'C ', and changes in the cable lengths from l0 to:
l1 =AB=A 'B=AB '=A 'B ', l2 =BC=B 'C=
BC '=B 'C ', and l3 =AC=A 'C=AC '=A 'C '
(Fig. 1). Changes in the distances between parallel
struts, Dsa 0 sa − s0 (a= x, y, z), are referred as
extensions. Relationships between distances sx , sy ,
and sz and cable lengths l1, l2, and l3 are derived from
model geometry, as described in the Appendix. The
following relationships are obtained

l1 =0.5zs2
x + s2

y −2sy +2, (1)

l2 =0.5zs2
y + s2

z −2sz +2, (2)

l3 =0.5zs2
z + s2

x −2sx +2. (3)



Two cases of interconnectedness are considered.
One, where cables and struts are connected by
frictionless pin joints at their junctions (‘‘pinned
structure’’). Consequences of this assumption are: (i)
the tension force in each cable segment depends on its
length, and (ii) forces acting at each end of a strut or
a cable reduce to a single force (tension for cables and
compression for struts) and no couples. In the other
case the cables run through frictionless loops at the
junctions (‘‘looped structure’’) and thus, they can
slide relative to the struts. Consequences of this
assumption are: (i) the tension force in the cables
depends on the overall cable length, not the length of

an individual segment, and (ii) loops joints transmit
only tension and compression forces to cables and
struts, respectively, no couples. At the molecular
level, the pinned structure could correspond to the
case where different CSK filaments are cross-linked or
physically bound to one another through intermolec-
ular binding interactions (e.g., microtubules and
intermediate filaments through kinesin). In contrast,
the looped structure could correspond to the case
when those filaments are not cross-linked and can
slide relative to each other (e.g., intermediate
filaments across actin stress fibers).

 

Pinned structure

From the principle of virtual work it follows that
the work of stretching force T during an incremental
axial extension of the structure (dsx ) is equal to the
work of tensile forces in the cables (F1, F2, and F3)
during corresponding changes of cable lengths
(dl1, dl2, and dl3).

T dsx =8 s
3

i=1

Fi dli . (4)

By substituting eqns (1–3) into eqn (4), the following
relationships are obtained

T=20F1
sx

l1
+F3

sx −1
l3 1 (5)

and

(a) F1
1− sy

l1
=F2

sy

l2
and (b) F2

1− sz

l2
=F3

sz

l3
. (6)

Equation (5) describes the balance of forces at the
joints A and A ' along the Ox-axis (Fig. 1). Equation
(6a) describes the balance of forces at the joints B and
B ' along the Oy-axis and eqn (6b) describes the
balance of forces at joints C and C ' along the Oz-axis
(Fig. 1). The balance of forces at the joints in all other
directions are satisfied by the symmetry of model
geometry.

Looped structure

In this case, forces in each cable are equal
throughout deformation (F1 =F2 =F3 0F ) and
depend on the overall cable length L=8(l1 + l2 + l3).
Taking these into account, it follows from eqns (5)
and (6) that

T=2F0sx

l1
+

sx −1
l3 1 (7)
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and

(a)
1− sy

l1
=

sy

l2
and (b)

1− sz

l2
=

sz

l3
. (8)

Equations (7) and (8) represent balance of forces at
the joints as described above.

 

In this simple starting case, it is assumed that the
cables are linearly elastic (i.e., Hookean) and carry
only tensile forces. Hence, their force vs. length
relationships are given as following

Fi =6k(li − lR ) if li q lR
0 if li E lR

(i=1, 2, 3) (9)

for the pinned structure, and

F=6K(L−LR ) if LqLR

0 if LELR
(10)

for the looped structure. Here k and K denote cable
stiffnesses, lR is the resting (unstressed) length of the
cable segment, lR E l0, and LR =24lR is the overall
resting length of the cable. Since the cable length
l0 =z0.375 is well defined, it was used as the
reference length in calculating cable strains instead of
the resting length lR , which can take any value
between 0 and l0(0Q lR E l0).

Stretching force vs. axial extension (T vs. Dsx )
relationships for the model are obtained as following.
For a given cable stiffness, and a given initial cable
strain j0 1− lR /l0(0E jE 1), lateral distances be-
tween struts, sy and sz , are computed from eqns (6a)
and (6b) (pinned) and eqns (8a) and (8b) (looped) for
a series of values of axial distances, sx . Computed
values are used to obtain stretching force T vs. axial
extension Dsx relationships from eqn (5) (pinned) and
eqn (7) (looped). Structure stiffness is obtained as the
ration E0T/Dsx . Note that the units of stiffness E
are in spring equivalents, i.e., force per unit length.
Computations were done numerically, using Mathe-
matica software.

Results

We began our quantitative analysis of the
architectural basis of cell shape stability by varying
prestress in the pinned six-strut tensegrity structure.
This was accomplished by numerically varying the
initial cable strain j, at a given cable stiffness k.
Results were obtained for the unit cable stiffness,
k=1. The stretching force T increased with
increasing axial extension Dsx and, in general, this

F. 2. (a) Stretching force T vs. axial extension Dsx relationship
and (b) structural stiffness E vs. stretching force T relationships for
the pinned model, for different initial cable strains j, i.e., different
prestresses. Plots were obtained for j of 0.0, 0.1, 0.5, 0.9 and 1.0,
k=1, and sx ranging between 0.5 and 2.0. Force is given in units
of force, extension in units of length, and stiffness in units of
force/length.

dependence was nonlinear [Fig. 2(a)]. This nonlinear-
ity, however, decreased with increasing prestress (i.e.,
increasing j) and became linear when the prestress
was maximal (i.e., j=1). In other words, structural
stiffness E increased with increasing stretching force
T (stiffening response) [Fig. 2(b)]. This indicates that
the resistance of the structure to shape distortion
increases with increasing stretching force. The
magnitude of the stiffening response decreased with
increasing prestress [i.e., the dependence of structural
stiffness E on stretching force T decreased with
increasing j; Fig. 2(b)].

The lateral extension Dsy increased [Fig. 3(a)]
whereas the lateral extension Dsz first increased and
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F. 3. Lateral extensions Dsy and Dsz vs. axial extension Dsx for the pinned model, for prestresses corresponding to initial cable strains
(a) j=0.1 and (b) j=0.9. Relationships calculated for other values of j exhibited qualitatively similar features. Plots were obtained for
unit cable stiffness k=1, and sx ranging between 0.5 and 2.0. Extensions are given in units of length.

then decreased with increasing axial extension Dsx

[Fig. 3(b)]. Furthermore, with increasing prestress
(i.e., increasing j), these dependencies diminished
such that in the limit where the prestress approached
maximum, lateral extensions vanished (i.e.,
Dsy , Dsz 4 0 as j 4 1). The asymmetry in the
dependences of lateral extension Dsy and Dsz on axial
extension Dsx implies that the model is not isotropic.

Fractional changes in cable lengths (cable strains)
Dli /l0 0 (li − l0)/l0(i=1, 2, 3) were much smaller than
the fractional change of the structure length in the
uniaxial direction (uniaxial strain) Dsx /s0 (Fig. 4). In
other words, as the entire structure stretches
uniaxially, it extends to a much greater degree than
its individual cables elongate.

For the looped structure, in order to have the same
prestress at a given initial cable strain j as in the
pinned case, it is assumed that the overall cable
stiffness K= k/24. Results were obtained for the cable
stiffness K=1/24 and for the same values of the
initial cable strain j and the axial distance sx as in the
pinned case. Stretching force T increased nonlinearly
with increasing axial extension Dsx [Fig. 5(a)]. Unlike
the pinned structure, structural stiffness E exhibited a
‘‘softening’’ effect at higher values of prestress (i.e.,
higher j); stiffness E decreased after an initial increase
in response to increasing stretching force T [Fig. 5(b)].
However, for smaller values of prestress (i.e., smaller
j), the model predicts a stiffening effect [Fig. 5(b)]. In
comparison with the pinned structure, the looped

F. 4. Cable strain Dli /l0 (i=1, 2, 3) vs. uniaxial strain of the structure Dsx /s0 for the pinned model, for prestresses corresponding to
initial cable strains (a) j=0.9 and (b) j=0.9. Relationships calculated for other values of j exhibited qualitatively similar features. Plots
were obtained for unit cable stiffness k=1, and sx ranging between 0.5 and 2.0.
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F. 5. (a) Stretching force T vs. axial extension Dsx relationship
and (b) structural stiffness E vs. stretching force T relationships for
the looped model, for different initial cable strains j, i.e., different
prestresses. Force is given in units of force, extension in units of
length, and stiffness in units of force/length.

F. 6. Lateral extensions Dsy and Dsz vs. axial extension Dsx for
the looped model, for all prestresses. Displacements are given in
units of length.

elongates, and this effect is independent of prestress
(i.e., independent of j; Fig. 7).

Schematic depictions of structural rearrangements
during uniaxial stretching is shown in Fig. 8(a), for
the pinned structure, and Fig. 8(b), for the looped
structure.

Discussion

 

The simple architecture of the six-strut tensegrity
structure and the deformation it undergoes during
uniaxial stretching do not directly correspond to that
of the CSK lattice of living cells or the deformation
that the CSK undergoes when mechanically stressed.
Nevertheless, these simplistic structures have been
shown to qualitatively mimic many properties

F. 7. Overall cable strain DL/L0 vs. uniaxial strain of the
structure Dsx /s0 for the looped model, for all prestresses.

structure is more compliant at a given prestress [Figs
2(b) vs. 5(b)].

For the cable stiffness K=1/24 and for the same
values of the initial cable strain j and the axial
distance sx as in the pinned case, lateral extension Dsy

decreased, whereas lateral extension Dsz first de-
creased and then increased with increasing axial
extension Dsx (Fig. 6). These relationships are
opposite to those in the pinned structure [Figs 3(a)
and 3(b)] and are independent of prestress (i.e.,
independent of j). Again, the asymmetry in the
dependences of lateral extensions Dsy and Dsz on the
axial extension Dsx implies that the model is not
isotropic. In addition, when stretched uniaxially, the
looped structure extends much more than the cable
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F. 8. Structural rearrangements of the pinned (a) and looped (b) six-strut tensegrity structures during the initial phase of uniaxial
stretching (i.e., 0QDsz Q 0.5). Only the portion of the structure from Fig. 1 inside the first quadrant of the Oxyz coordinate system,
including stretching force T/2 at point A, are shown. The reference configuration is drawn by solid lines and the deformed configuration
is drawn by interrupted lines. During the initial phase of stretching of the pinned structure (a), the distances between the pairs of parallel
struts increase (i.e., Dsx qDsy qDsz q 0, Fig. 3) causing, the triangle ABC, formed by the cables, to rotate and to change its shape due
to change of cable lengths. Thus, stretching of the structure is partly accounted for by rotation of the triangle and partly by cable
elongations. In the looped structure (b), however, as the distance between the pulled struts increases (i.e., Dsx q 0), the lateral distances
decrease initially (i.e., Dsy QDsz Q 0, Fig. 6). Thus, the triangle ABC undergoes a little rotation and a considerable shape distortion.
Nevertheless, the perimeter of the triangle (i.e., the overall cable length) changes little. The above description of structural rearrangements
of the pinned and looped structures explains why when stretched, those structures extend more than the cables elongate.

expressed in living cells (Ingber & Jamieson, 1985;
Ingber, 1993a; Ingber et al., 1994). Thus, there is
reason to suppose that they may share essential
principles of design and a common basis of
mechanical stability.

One of the most important results of this study is
that the predicted stretching force vs. axial extension
(T vs. Dsx ) relationships of the structure were
nonlinear [Figs 2(a) and 5(a)], even though the force
vs. extension relationship of the cables was linear
[eqns (9) and (10)]. This indicates that mechanical
properties of individual structural elements are not
the sole determinants of mechanical properties of the
integrated structure during its shape distortion.
Instead, prestress and architectural features of the
structure were found to contribute importantly to its
mechanical properties, a finding consistent with
results obtained in studies with living cells (Wang
et al., 1993). This point can be seen by rewriting
eqn (5) as follows

T=(kj)×$01+Dl1/jl0
1+Dl1/l0

−
1+Dl3/jl0
1+Dl3/l0 1

+201+Dl1/jl0
1+Dl1/l0

+
1+Dl3/jl0
1+Dl3/l0 1 Dsx%. (11)

There are two distinct terms on the r.h.s. of eqn (11).

The term kj equals prestress divided by the reference
cable length l0. The term in the angular bracket
represents the contribution of the structure’s architec-
ture (i.e., the geometry of the structure and the
manner in which structural elements are intercon-
nected). The prestress determines the initial structural
stiffness whereas the architecture determines how the
structural stiffness changes during deformation. The
only parameter that is common in both terms is
the initial cable strain j. Thus, the degree to which the
cables are initially extended contributes to both initial
stiffness and change of stiffness during deformation.
On the other hand, the cable stiffness k appears only
to influence the prestress. Thus, the cable stiffness k
only affects the initial stiffness of the entire structure;
it does not contribute to the change in stiffness the
structure exhibits during deformation. The reason for
the latter is that cable elasticity is defined in terms of
a single elastic coefficient, k [eqn (9)].

According to the above, it appears that the
contribution of the initial cable strain j to the
structural stiffness E is both through prestress (kj)
and through architecture of the structure whereas the
contribution of the cable stiffness k to the structural
stiffness E is only through prestress. To illustrate this,
we consider the following cases.

In the absence of prestress (i.e., j=0) the structure
has not initial (i.e., no intrinsic) stiffness (i.e., E=0
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when Dsx =0) [Fig. 2(b)]. The structure is very
deformable as indicated by lateral extensions Dsy and
Dsz which are larger than in any case of a non-zero
prestress.

If the prestress were maximal (i.e., j=1 for a given
k), then the structural stiffness would be constant
throughout deformation (E=4k for all Dsx )
[Fig. 2(b)]. The structure is also not easily deformed
as indicated by zero lateral extensions Dsy and Dsz .

Note that j=0 and j=1 define the lower and the
upper bounds of prestress. It is unlikely that the
prestress in the CSK of living cells would correspond
to either one of these limits, but more likely would fall
between these limits.

If the prestress is varied isometrically, i.e., if the
initial cable strain j is fixed and cable stiffness k is
varied, the initial structural stiffness will vary
proportionately, but the manner in which the stiffness
of the entire structure changes during stretching will
not. In other words, graphs of structural stiffness vs.
stretching force would be mutually parallel with
higher stiffnesses corresponding to higher prestress
(i.e., higher kj). This type of response to isometric
changes in prestress occurs, for example, in airway
smooth muscle cells that are stimulated by contractile
agonists (Hubmayr et al., 1995).

This analysis also revealed that at a given prestress
the looped structure is more compliant than the
pinned one [Figs 2(b) vs. 5(b)]. The reason for this
increased deformability is that when looped connec-
tions are utilized, there are more unconstrained
internal degrees of freedom of motion due to sliding
of the cables through the frictionless loops. Thus,
under a given stretching force T, the looped structure
undergoes larger deformation than the corresponding
pinned structure and consequently, it is more
compliant. Another distinct feature of the looped
structure is that during stretching it undergoes the
same shape distortion regardless of the prestress
(Fig. 6). This behavior is due to the fact that the
equilibrium requirements at the joints B and B '
[eqn (8a)] and joints C and C ' [eqn (8b)] are
independent of the prestress (i.e., independent of j).

 

An explanation based on energetics for why the
six-strut tensegrity structure has no intrinsic stiffness
unless prestressed is rooted in the fact that at the
reference state the total cable length L (and hence
elastic energy stored) attains a minimum (Kenner,
1976). This can be easily seen in the looped structure
and therefore, it is considered first. For small axial
extensions, structural stiffness equals the initial slope

of the force vs. extension relationship (i.e., E 4
dT/dsx as Dsx 4 0). Thus, it follows from eqn (7) that

E0 =
dT
dsx b0 =0dF

dsx

1L
1sx1b0 +F0

d
dsx 01L

1sx1b0, (12)

where subscript 0 denotes the function evaluated at
the reference (initial) state. Since the total cable length
L attains minimum at the reference state, 1L/1sx =0 =0
and hence the first term on the r.h.s. of eqn (12)
vanishes. Since in the absence of prestress the cables
carry no initial force (i.e., F0 =0), the second term on
the r.h.s. of eqn (12) vanishes and hence, the initial
structural stiffness E0 =0. Thus, prestress is necessary
for the structure’s intrinsic ability to resist shape
distortion (i.e., E0 q 0).

The pinned case is considered next. It follows from
eqn (5) that

E0 =
dT
dsx b0 =8 s

3

i=1 $dFi

dsx

1li
1sx

+Fi
d

dsx 01li
1sx1%b0

=8 s
3

i=1 $dFi

dli
dli
dsx

1li
1sx

+Fi
d

dsx 01li
1sx1%b0. (13)

By differentiating eqns (1–3) and (6) with respect to
sx , it is obtained that dli /dsx =0 =0 (i=1, 2, 3) when
the initial cable strain j=0. Thus, the first term on
the r.h.s. of eqn (13) vanishes. Since in the absence of
prestress (i.e., j=0) the cables carry no initial forces
(i.e., Fi =0 =0, i=1, 2, 3), the second term on the r.h.s.
of eqn (13) also vanishes and hence, the initial
structural stiffness E0 =0. Thus, as in the case of the
looped structure, prestress is required for the
structure’s intrinsic ability to resist shape distortion
(i.e., E0 q 0).

In summary, the fact that the total cable length
(and hence elastic energy) attains a minimum at the
reference state implies that the six-strut tensegrity
structure is stable and does not collapse in the absence
of prestress. However, prestress provides the initial
stiffness E0 to the structure whereas the absence of
prestress causes the structure to lack intrinsic ability
to resist shape distortion.

 

Instructive parallels are evident between the
behavior of tensegrity structures and observations in
living cells. First, the tensegrity structure exhibits
structural stiffness E that increases with increasing
level of prestress, for example, due to increased initial
strain j in the cables [Figs 2(b) and 5(b)]. This result
is consistent with the observation that CSK stiffness
measured in living endothelial cells increases with
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increased cell spreading (Wang & Ingber, 1994) which
is, in turn, mediated by the cell extension and the CSK
reorganization (Mooney et al., 1995). Thus, it is not
unreasonable to postulate higher levels of prestress in
more highly spread cells, although this remains to be
demonstrated experimentally. Second, the tensegrity
structure exhibits initial stiffness (stiffness at the
reference state) that increases with increasing
prestress [Figs 2(b) and 5(b)]. Interestingly, the initial
CSK stiffness (i.e., the value extrapolated for CSK
stiffness at zero applied stress) in spread endothelial
cells has been shown to be higher than that in round
cells (Wang & Ingber, 1994), a finding consistent with
the possibility that the initial cell stiffness is provided
by the prestress in the CSK. Third, the pinned
tensegrity structure exhibits stiffness greater than that
of the looped structure [Figs 2(b) vs. 5(b)]. This result
is consistent with the observation that cross-linking in
isolated actin filament networks increases their ability
to resist shape distortion (Wachsstock et al., 1993)
and with the finding that CSK stiffness increases when
ATP is depleted and actomyosin cross-bridges are
fixed (Wang & Ingber, 1994). Fourth, the tensegrity
structure undergoes larger fractional changes of
length than its cables when it stretches uniaxially
(Figs 5 and 7). Living cells, such as neurites can
similarly elongate when mechanically stressed (Den-
nerll et al., 1988) even though individual actin
filaments and microtubules are not very extensible
(Gittes et al., 1993). Finally, the tensegrity structure
exhibits stiffening. Although it is not linear over the
entire range of observed prestresses (i.e., for
0E jE 1), the stiffening response is close to linear for
some prestresses within this range [Figs 2(b) and 5(b)].
This specialized form of stiffening behavior is
exhibited by living endothelial cells (Wang et al.,
1993; Wang & Ingber, 1994) as well as many
biological tissues (cf. Fung, 1981; Mow et al., 1992).
Thus, our results support the concept that CSK
architecture and the prestress rather than the
mechanical properties of its individual filaments, are
the primary determinants of cell deformability.

On the other hand, some of the responses of the
simple tensegrity structure to uniaxial extension that
we observed in the present study do not correspond
directly with observations in cells. For example, the
structure exhibited a stiffening response that de-
creased with increasing prestress [Figs 2(b) and 5(b)].
In contrast, data obtained in living endothelial cells
(Wang & Ingber, 1994) indicate that the stiffening
response increases with increasing cell spreading (i.e.,
increasing prestress). There are many possible reasons
for this discrepancy. First, in the structure treated in
this report the reference configuration was always

spherical (round) and the interconnectedness did not
change when the prestress was altered. This is not
likely the case in living cells; as the cell spreads, CSK
architecture transforms from a round to a flat
configuration. Moreover, cell spreading may cause
changes in prestress that are not entirely related to the
extent of spreading but also reflect alterations in
interconnectedness or density of the CSK (e.g.,
altered CSK polymerization) or to biochemical
changes in the cell (e.g., calcium influx, changes in
ATP levels, protein phosphorylation, etc). Second,
the tensegrity structure underwent lateral expansions
when it was stretched uniaxially (lateral extension Dsy

and/or Dsz increase with increasing axial extension Dsx

over a portion or over the entire range of Dsx ; Figs 3
and 6). This result is the opposite from that exhibited
by common materials, including tissues and cells,
which undergo lateral contraction when stretched
uniaxially. Third, for simplicity in this first attempt at
quantitatively modeling the CSK, cables were
assumed to be linear elastic (i.e., Hookean) and the
struts to be rigid. In contrast, CSK filaments are
known to exhibit nonlinear and viscoelastic behavior
(Janmey et al., 1991; Wachsstock et al., 1993).
Finally, the model experiences both shape and
volumetric deformation during uniaxial stretching (as
employed in this study) whereas cells exposed to shear
stresses only experience isovolumetric shape defor-
mation (Wang et al., 1993; Wang & Ingber, 1994).

The parallel drawn between mechanical behaviors
of the pinned vs. looped structures on one hand, and
of cross-linked actin networks vs. uncross-linked actin
gels (Wachsstock et al., 1993) on the other, should
also be taken with reservation. One reason is that the
model depicts the effect of interconnectedness
between two types of structural elements, cables and
struts, whereas the published data depict the effect of
cross-linking between filaments of a single biopoly-
mer, actin. Another reason is that those data were
collected in isolated actin networks, in the absence of
prestress. Importantly, these actin gels also do not
exhibit linear stiffening behavior (Janmey et al., 1991;
Wang et al., 1993).

In this study we only considered the possible
contributions of static tensegrity CSK mechanism to
the observable mechanical behavior of living cells
exposed to shear stresses. The contributions of
cross-link dynamics was not considered. Cross-link
dynamics by itself cannot explain linear stiffening.
For example, we have shown previously that
membrane permeabilized CSK preparations that
probably do not undergo significant CSK remodeling
still exhibits linear stiffening behavior, although other
CSK behaviors (e.g., stiffness, permanent defor-
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mation, apparent viscosity) differ significantly (Wang
& Ingber, 1994). Furthermore, if dynamic changes in
the CSK (e.g., polymerization, geometrical rearrange-
ments, and cross-linking) are stress sensitive (as
suggested by the works of Hill & Kirschner, 1981;
Dennerll et al., 1988; and Ingber, 1993a), then local
dynamic remodeling of the CSK would occur in
response to local static stress so as to minimize those
stresses. However, at any instant of time, those
stresses could be stabilized via tensegrity architecture.

Conclusions

Despite these reservations, this analysis reveals the
quantitative basis of several phenomena that tenseg-
rity architecture expresses. Many of the features are
also expressed in endothelial cells and other
eukaryotic cells as they resist shape distortion. This is
an important observation since it has been customary
to view cellular mechanics in terms of continuum
mechanics (cf. Elson, 1988; Evans & Yeung, 1989;
Fung & Liu, 1993). By considering the discrete nature
of the CSK it is possible to obtain forces and
deformations that mediate cell shape distortion
starting from the first principles of mechanics (e.g.,
from equilibrium of the adjacent structural elements)
as we did in this analysis. The overwhelming weight
of morphological evidence indicates that the complex
lattice of CSK microfilaments, microtubules, and
intermediate filaments (Amos & Amos, 1991; Ingber,
1993a) stretches through the cytoplasm from the cell
surface to the nucleus (Fey et al., 1984). Furthermore,
the shape stability of many cells has been shown to
depend on a balance between tension generated in
contractile microfilaments and resisted by internal
microtubules (Dennerll et al., 1988; Danowski, 1989;
Kolodney & Wysolmerski, 1992; Ingber, 1993a;
Heidemann & Buxbaum, 1994). Thus, tensegrity
architecture is not an unreasonable starting point for
modeling the living cell CSK in adherent cells.
Nevertheless, the six-strut tensegrity model must be
regarded only as a crude representation of the
mechanics of the CSK. Even so, our analysis
identified prestress and architecture of the CSK as key
features that might underlie a cell’s ability to regulate
its shape.
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APPENDIX

A derivation of the expression for l1 as a function
of sx and sy , eqn (1), is given below. It is based on the
derivation of Kenner (1976).

Figure A1 depicts the portion of the six-strut
tensegrity structure from Fig. 1 inside the first
quadrant of the coordinate system Oxyz; AB= l1,
OAx = sx /2, OBy = sy /2, AAx =1/2, and
BBy =1/2. Thus,

l1 =zAB 2
y +BB 2

y

=zOA2
x +(AAx −OBy )2 +BB2

y

=0.5zs2
x + s2

y −2sy +2.

The expressions for l2 and l3 given by eqns (2)
and (3) can be obtained in a similar manner.

F. A1. The portion of the six-strut tensegrity structure (Fig. 1)
inside the first quadrant of the Oxyz coordinate system.

Nomenclature

Fi =force in the i-th cable of the
pined structure (i=1, 2, 3)

F=force in the cable of the looped
structure

k=cable stiffness of the pinned
structure

K=cable stiffness of the looped
structure

li =length of the i-th cable
(i=1, 2, 3)

l0 =z0.375=reference length of
the cables

lR =resting length of the cables
Dli 0 li − l0 = elongation of the i-th

cable (i=1, 2, 3)
j0 1− lR /l0 = initial cable strain

L=8(l1 + l2 + l3)=overall cable length
L0 =24l0 =overall reference cable length
LR =24lR =overall resting cable length

DL0L−L0 =overall cable elongation
sa =distance between pairs of paral-

lel struts (a= x, y, z)
s0 =0.5=distance between parallel struts

at the reference state
Dsa 0 sa − s0 = structural extension

(a= x, y, z)
T=stretching force

E0T/Dsx =structural stiffness
CSK=cytoskeleton


