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� Measure non-adherent cells

� Exhibit liquid-like flow behavior

� Rate of entry depends on pressure

� Exhibit surface tension behavior
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� Exhibit surface tension behavior

� Recovers shape upon release 

� Is a fluid droplet model appropriate?

� What is cellular viscosity?

� What is mechanical coupling to cortex? 



� Model:
� Cortical layer enclosing a 

Newtonian liquid

� Core: 
� Cytoplasm viscosity: µ

Newtonian fluid: Stress (τ) vs.
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� Newtonian fluid: Stress (τ) vs.
velocity gradient is linear:

τ = µ (du/dy)

� Cortex: 
� Anisotropic viscous fluid layer 

� Negligible bending stiffness

� Two viscosity terms 
� κ is dilation viscosity

� η is shear viscosity

� Pipet: 
� Frictionless interaction

� Reaction force at pipet
orifice



� Define constitutive relationship for liquid core 

� Equations of motion for Newtonian fluid with creeping 

flow

� Determine boundary conditions
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� Determine boundary conditions

� Equations of motion for cortical shell (cortex)

� Equations of viscous deformation for cortical shell

� No slip condition at core-cortex interface



� Not an easy task to obtain numerical solution to 

this problem

� Discontinuities

� Inversion difficulties
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� Yeung & Evans’ approach

� Spherical solutions exist for cell exterior to pipet

� Course approximation used for flow inside pipet

� Coupling provided by pressure difference:

∆P = (p0-porif) + (p0rif-pi) 



� Equations of motion

� By means of indicial notation, this is 
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By means of indicial notation, this is 
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� In rectilinear coordinates 
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� Incompressibility condition for a fluid

� By means of indicial notation

uu u ∂∂ ∂
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� Consider one-dimensional flow (x,u).  If gradient 
exists, then fluid density would have to expand or 
compress to satisfy.
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� Mechanical equilibrium

� By means of indicial notation
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By means of indicial notation
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� By taking derivative of each equation (1), e.g.
2
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� Can sum together to get 
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� Simplifying by mechanical equilibrium
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� Simplifying by incompressibility condition

� Have creeping flow eqs.
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� Stress Resultants (τm , τφ)

� For thin shell, stresses integrated by thickness

� Units [N/m]

� Types: lateral, bending, torque, transverse

ij
dτ σ δ= ∫
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� Types: lateral, bending, torque, transverse



� Coordinate system: (s, θ)

� Axisymmetry yields in-plane stress resultants 

� Meridional τm : τm ≈ σm δ

� Circumferential τφ : τφ ≈ σφ δ
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τφ

τm



� Balance of forces in normal direction

where  σn = p0 the outide pressure, ni are unit vectors normal 

∑ σ
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n 0 i

to the surface, and ∑ ni σij nj are normal tractions on the 
interior surface by the liquid core

p0

∑ ni σij nj



� Balance of forces in tangential direction

where  σt = 0 on the outside, ti are unit vectors tangential to 

the surface, and ∑ t σ n are tangential tractions on the 
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the surface, and ∑ ti σij nj are tangential tractions on the 
interior surface by the liquid core

σt = 0

∑ ti σij nj



� For BCs, we need constitutive relationships

� Cortex deforms by planar dilation and shear

� κ is viscosity for surface area dilation

� η is viscosity for shear shear

� Units: [dyne·s/cm2]*[cm] = [dyne·s/cm]
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� Units: [dyne·s/cm2]*[cm] = [dyne·s/cm]



� First order model: stress resultants are 

proportional to rate of dilation and shear
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whereτ0 is static in-plane tension corresponding to zero 

rate of shearing and dilation

� Rotation of c.s. for principal shear stresses

τm

τφ

τs (shear)

τ (dilation)



� Kinematics of flow in the shell (curved surface)

where v , v are velocity fields derived from normal and 
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where vs, vn are velocity fields derived from normal and 
tangential projections of fluid core velocities at the interface 

i.e., motion of cortical layer specified by liquid core’s fluid 
velocities at the interface with a no-slip assumption



� Yeung and Evan use a general solution for 

axisymmetric creeping flow for exterior region

19

� Course approximation used for inside the pipet



� Compound liquid drop model

� Incorporates the higher viscosity and stiffness of the 

smaller nucleus
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µ1



� Shear thinning liquid drop model

� Approximates the apparent viscosity decrease with 

aspiration pressure
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� Positive feedback: increase in shear rate leads to decreased 

viscosiy, which in turn further increases shear rate…



� Maxwell Liquid Drop

� Large deformations satisfied by Newton liquid drop 

model but not for small deformations
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� Accounts for initial elastic-like entry during aspiration


