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ABSTRACT Many nonadherent cells ex-

ist as spheres in suspension and when
sucked into pipets, deform continu-
ously like liquids within the fixed surface
area limitation of a plasma membrane
envelope. After release, these cells
eventually recover their spherical form.
Consequently, pipet aspiration test
provides a useful method to assay the
apparent viscosity of such cells. For
this purpose, we have analyzed the
inertialess flow of a liquid-like model
cell into a tube at constant suction
pressure. The cell is modeled as a

uniform liquid core encapsulated by a

distinct cortical shell. The method of

analysis employs a variational ap-
proach that minimizes errors in bound-
ary conditions defined by the equations
of motion for the cortical shell where
the trial functions are exact solutions
for the flow field inside the liquid core.

For the particular case of an aniso-
tropic liquid cortex with persistent ten-
sion, we have determined universal
predictions for flow rate scaled by the
ratio of excess pressure (above the
threshold established by the cortical
tension) and core viscosity which is the
reciprocal of the dynamic resistance to
entry. The results depend on pipet to
cell size ratio and a parameter that

characterizes the ratio of viscous flow
resistance in the cortex to that inside
the cytoplasmic core. The rate of entry
increases markedly as the pipet size
approaches the outer segment diame-
ter of the cell. Viscous dissipation in the
cortex strongly influences the entry flow
resistance for small tube sizes but has
little effect for large tubes. This indi-
cates that with sufficient experimental
resolution, measurement of cell entry
flow with different-size pipets could
establish both the cortex to cell dissi-
pation ratio as well as the apparent
viscosity of the cytoplasmic core.

INTRODUCTION

Many nonadherent cells exhibit liquid-like response when
aspirated into small micropipets. Liquid-like behavior is
evidenced by continuous flow into the pipet where the rate
of entry increases in proportion to the suction pressure in
excess of a constant threshold. Furthermore when the
suction is lowered to the threshold, flow ceases and the
aspirated projection of the cell inside the pipet remains
essentially stationary. Subsequent to release from the
pipet, the cell recovers its initial spherical shape. An
example of this response is shown in Fig. 1 for a blood
phagocyte (1). It is especially significant that the shape of
this type of cell in suspension is usually spherical before
and after a micropipet aspiration test; also the portion of
the cell exterior to the pipet deviates only slightly from the
spherical form throughout the aspiration test. These
observations of continuous flow and near spherical shapes
are essential features of a liquid-like body subject to a
surface or interfacial tension that establishes the thresh-
old pressure. Deviations from the simple shape and flow
characteristics indicate more complicated structures with
solid-like or plastic material properties. Major alterations
in material behavior are often observed when cells are
stimulated to actively generate stresses and become
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motile. Here, our intent is to provide a method for analysis
of a passive flow of liquid-like cells into micropipets that
can be used to estimate an apparent viscosity for the cell
body and to predict the dynamic resistance to entry of
cells into tubes with calibers less than the cell diameter. In
a companion paper (2) it will be shown that application of
this analysis to measurements of passive flow of white
blood cells into pipets yields values for cellular viscosity
comparable with that measured by other microscopic
techniques (3,4).

Even though identification of the cell as a liquid-like
body is a major reduction in complexity, it is still not clear
how different parts of the cell contribute to the total
viscous flow resistance. Obviously, cells have complex
internal structures that include nuclei, granules, and
other organellar bodies. Yet as shown in Fig. 1, this type
of cell shows little deviation from spherical form through-
out aspiration. This indicates that to first order the cell
interior can be modeled as a uniform liquid with perhaps
the exception of large bodies like the nucleus.' Hence, an

'Little is known about the material properties of nuclei. In our observa-
tions, the lobulated nuclei of granulocytic white cells offer little resis-
tance to deformation whereas the large spherical nuclei of lymphocytes
are much more resistant to deformation than the small annulus of
cytoplasm which surrounds the nucleus.
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"apparent" viscosity is introduced to represent the aver-
age dynamic resistance to shear for the "slurry" of
organellar contents inside the cell. However, even for the
simple entry flow behavior ascribed to this type of cell, the
membrane and cortex which encapsulate the interior
contents can have markedly different and specialized
mechanical properties that will not be apparent in the
aspiration test. An identifiable "shell" capsule is common
to most cells. The outer plasma membrane is usually
supported by a soft "scaffolding" or gel layer that acts as
skeletal reinforcement for the thin bilayer. In blood
phagocytes, this layer contains an actin-polymerizing
system with sophisticated biochemical characteristics (5-
6). From the viewpoint of mechanics, the cortical shell is a
region with anisotropic (surface-like) mechanical proper-
ties distinct from the liquid core.

Based on ultrastructural evidence, the cortical shell can
be treated as a composite made-up of a superficial plasma
membrane and subsurface gel-like layer as illustrated in
Fig. 2. The plasma bilayer membrane is usually ruffled or

gathered in folds that offer little or no resistance to
dilation (increase in projected area) until pulled smooth.
This conclusion is deduced from measurements of
mechanical properties for lipid bilayer membranes which
show that there is a very large static resistance to change
in area per molecule but very low resistance to bending
deformations (8). Also, bilayer membranes above the acyl
chain crystallization temperature do not resist surface
shear deformations except with negligible viscous
stresses. Once the wrinkles and folds are pulled smooth,
further increase in projected area requires a decrease in
surface density that is opposed by large tensions and leads
to lysis after only a small increase in area (-3%, reference
8). Hence, the flow properties of the cortical shell are
dominated by the subsurface gel; the plasma membrane
simply defines an area limit to dilation. The cortical shell
not only possesses special viscous properties distinct from
the liquid core but can also be a source for surface-like
tension because of contractile assemblies embedded in
this region (7). Observations of cell recovery to nearly
perfect spheres after large extensions into micropipets
indicates that a surface-like tension is present. Further-
more, the threshold pressure (above which flow into the
pipet begins) scales inversely with pipet caliber which
implies that a persistent tension exists in the outer cortex
(1, 2). Thus, we are led to the approximate model for
liquid-like cells as a uniform viscous-liquid core sur-
rounded by an anisotropic viscous cortical shell with a
persistent lateral tension.

Here, we describe a method for analysis of the in-flow
characteristics of the model cell just outlined and give
results for in-flow rates as a function of pipet caliber and
ratio of viscous dissipation in the liquid core to that
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FIGURE 1 Sequence of video micrographs of a liquid-like cell (a blood
granulocyte) before, during, and after aspiration into a 3.5 ,um caliber
pipet.
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FIGURE 2 Conceptual model of the cell cortex that illustrates the wrinkled or ruffled superficial plasma membrane supported by a subsurface gel-like
layer. Also shown is the approximate two-fold limit to area expansion established by the plasma membrane.

concentrated in the cortical layer. In the analysis, the
shapes of cells are assumed to stay essentially spherical,
consistent with observations of white blood cell aspiration.
However, this assumption is not essential for the analysis;
shape could be varied but numerical computations
become significantly more time-consuming. The viscous
drag of the exterior aqueous solution on the cell body is
neglected because of the extremely slow response

observed for cell entry into pipets as compared with the
rapid in-flow of water at the same suction pressures (e.g.,
a factor of 104-105). This observation translates into a

ratio of "average" viscosity for cells to that of water of
105:1 (2, 3 and 4). Because of the microscopic size of

these cells and the extremely slow flow rates, inertial
effects are completely negligible; hence, the equations of
motion reduce to those for creeping-flow where mechani-
cal equilibrium is derived from the balance of viscous
stresses against applied forces (9).

Method of analysis: a
variational approach
We outline here a variational method for analysis of the
time-dependent deformation of a cortical shell-liquid core

composite body. The approach is based on utilization of
exact eigenfunction solutions known a priori for the
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hydrodynamic flow field in the liquid core to create a

"trial" function for the velocity field. With the assump-
tion of no-slip at the cortical shell-liquid core interface,
the trial function specifies the kinematics of flow for the
cortex as well as the interior liquid. Even though the trial
function is an exact solution to the equations of motions in
the liquid interior, the arbitrary choice of coefficients and
finite number of eigenfunctions leave residual errors in
the balance of forces in the cortical shell. The integral of
the square errors in equations of motion for the cortical
shell over its contour establishes a function which is the
measure of the quality of the trial solution. Thus, this
function is minimized with respect to variations in the
coefficients of each eigenfunction in the expansion to
obtain an optimal solution to the flow field. In the limit of
an infinite (complete) sum of eigenfunctions, it is well-
known that this approach gives the exact series expansion
for the solution which would be obtained by direct inver-
sion of the boundary conditions (10). However, the varia-
tional approach provides two major advantages over

direct inversion of boundary conditions: (a) the optimal
finite series expansion smoothly approaches the exact
solution and does not exhibit large oscillations ("ring-
ing") common to truncation of an exact series solution;
and (b) with this method, it is easy to evaluate compli-
cated boundary conditions where the cortical shell can be
a general viscoelastic material (e.g., nonlinear in the
velocity components) or where the geometry does not give
separable boundary conditions.
We begin with the constitutive relation for the incom-

pressible liquid core,

ai>= -p * aij + ax+ ax,] (1)

where uj are the components of stress defined appropriate
to cartesian coordinates xi; u is the apparent Newtonian
viscosity for the interior contents; p is the hydrostatic
pressure field required to ensure the incompressibility
condition,

49UkE 0.kO (2)
k COXk

The equations of mechanical equilibrium (motion in the
absence of inertia) are obtained from gradients of the
stresses as,

40ik0
E-= O
k OXk

which leads to the creeping-flow equations,

ap 02v,

Ox, k aXk

where v; are components of the velocity field at the local
position xi. Solution to Eqs. 2 and 3 subject to boundary
conditions at the interface with the cortical shell specify
the velocity field. Methods for solution of Eqs. 2 and 3 are
well-established and extensively described in the book by
Happel and Brenner (9). Because these equations are
linear in the velocity components, solutions can be built-
up from superposition of eigenfunction solutions appro-
priate to the symmetry.

Mechanical equilibrium for the cortical shell is given
by the balance of forces normal and tangential to the shell
contour. Because we assume that the shell is thin, the
stresses that act on the shell can be cumulated by integra-
tion through the shell thickness. In general, this leads to
lateral stress resultants (tensions-forces per unit length)
that act tangent to the shell midsurface, bending
moments or torque resultants which act as couples about
contours tangent to the shell, and transverse shear compo-
nents which act normal to the shell (1 1). Because of the
sharp bend observed for aspirated cells at the pipet
entrance (as seen in Fig. 1), we anticipate that the
bending rigidity of the shell is small and can be neglected.
Thus for an axisymmetric geometry, only the in-plane
stress resultants Tm and r4, remain which are tension
components that act along the meridional and circumfer-
ential directions respectively. These resultants are prod-
ucts of mean stresses x the shell thickness 6:

Tm - am * 6; T, , a4 *

With these stress resultants, the balance of forces normal
to the shell is derived from the normal tractions applied to
the bounding surfaces and the projections of the tension
components normal to the surface due to shell curvature,

dO sin 0
an an -Tni I aij * nj = rm *dsr+r, * (4)

where an = -po is the normal traction on the exterior
surface and 2;n,aijj is the normal traction on the interior
surface created by the liquid core. As illustrated in Fig. 3,
the shell contour is described by intrinsic coordinates
(s, 0) which are functions of the spatial coordinates (r, z).
Similarly, the force balance tangent to the shell contour
includes tangential tractions on the exterior surface
(at = 0) and interior surface (t;tiuijnj) for stresses from
the liquid core. Gradients in tension primarily oppose the
net drag on the shell from the liquid core,

Au, - + E ti* * dsa [T ] cos 0. (5)

(Note: ni and t, are unit vectors normal and tangential to
the interface.) Eqs. 4 and 5 represent stress-type boun-

(3) dary conditions to be satisfied simultaneously with the
equations of motion for the liquid core. To evaluate these
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FIGURE 3 Schematic of the convergent flow into the pipet and the
in-plane stress resultants supported by the cortical shell.

boundary conditions, we need to introduce constitutive
relations for the cortical shell.
As discussed previously, the cortex is modeled as a

contractile liquid surface, i.e., an anisotropic fluid layer
with static tension. The layer is assumed to be isotropic
with respect to the surface normal n, but anisotropic with
respect to thickness dimension. This means that the
cortex deforms by planar expansion and shear with no

gradient in velocity across its thickness (i.e., 9,,/On 0
across the shell). Hence, two coefficients of viscosity are

required: K- for surface area dilation and 7- for surface
shear. As a first order model, the dilatory and shear stress
resultants in the cortex are proportional to rates of surface
dilation and shear (Va, Vs) as follows:

(Tm + rT,,)/2 = t + K * Va

Ts-(rm- )/2 =2f - s, (6)

where surface viscosities have units of viscosity x thick-
ness (dyn-s/cm). Based on the kinematics of flow tangent
to the shell contour, the rates of deformation in the
cortical layer are given in terms of normal and tangential
velocity components (v., vJ) of the interface as,

V¢=d s + Vs *cos 0 + vn (d +-)nVa ds cr s+n ds r/

dV VcoS dO sin0~72Vs =

ds r cos r
(7)

At the interface between the cortical layer and liquid
core, it is assumed that the velocity field is continuous
(i.e., no-slip). Thus, the motion of the cortical layer is
specified by the surface velocity field (v5, vn) derived from
normal and tangential projections of the core-fluid veloci-
ties at the interface,

Vn= nk * Vk
k

Vs =Z tk *Vk (8)
k

Eqs. 6-8 combine with Eqs. 4 and 5 to specify the stress

boundary conditions as functions of the velocity field in
the liquid core.

Even though the equations of motion for the liquid core
(2 and 3) and the cortical shell (4 and 5) are linear in the
velocity components based on the constitutive relations,
obtaining a useful numerical solution to these equations is
no easy task. As noted before, direct inversion of the
boundary conditions expressed in Eqs. 4 and 5 leads to an
infinite series representation for the flow field solution
and truncation for practical computation creates large
oscillations near discontinuities (e.g., at the edge contact
with the pipet). Indeed if the contour of the cortical shell
is not a simple form like a perfect sphere, then direct
inversion of the boundary conditions given by the balance
of forces on the cortical shell can become intractable.
Other direct approaches like boundary-integral methods
(where the divergence theorem and local source functions
for the flow field are used to derive the solution from an
integral of these sources over the boundary: 9, 12, and 13)
could also be used but are not adequately developed for
this situation where the body is immersed in an inviscid
medium and where the body is in contact with rigid
surfaces (i.e., the pipet wall). Thus, we have chosen a
simple variational method to obtain a smooth approxima-
tion to the solution.
The approach begins with exact solutions to the flow

field in the liquid core. General solutions are chosen in
terms of coordinates that best match the symmetry of the
situation. Here, spherical polar coordinates (R, 0, 0) are
the obvious choice for flow inside the portion of the model
cell exterior to the pipet whereas cylindrical polar coordi-
nates (r, z, 0) are appropriate for the flow field inside the
pipet. The components of velocity are required to be
continuous at interfaces between separate geometric
regions (e.g., across the orifice of the pipet). In the
development that follows, we use a coarse approximation
to represent the flow inside the pipet because analysis
shows that dissipation in the pipet is only a small fraction
of the total viscous resistance to entry of the body. In this
approximation, local continuity of velocity components at
the entrance to the pipet is replaced by continuity of the
mean axial velocity derived from the volumetric in-flow
plus a constant orifice pressure. This approach creates a

simple algebraic coupling between flow fields in the
exterior spherical segment of the cell and the aspirated
cylindrical portion. The coupling is provided by the
requirement that the total suction pressure equal the sum
of the pressure difference from outside the cell to the
orifice plus the drop in pressure from the orifice-across
the lead cap-to the pipet interior. As expected, the total
viscous resistance to flow is the sum of entry flow resis-
tance for the exterior segment plus the resistance to flow
inside the pipet.

Before we examine the details of flow inside the pipet,
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we continue with the variational analysis of the flow field
in the segment of the body exterior to the pipet. General
solutions to equations for axisymmetric creeping-flow and
spherical polar coordinates are given by Happel and
Brenner (9):

VR(R, O) = - (An * R-2 + Cn * R') P, I(cos 0)
n-2

ve(R, 0) = z: (nAnR" 2 + (n + 2)CnRn) Ia(cos0)
n-2 sin 0

p(R, 0) = HI-p 2( l 1) CnRn-I Pn- I(cos 0), (9)
n-2 (n-i

where Pn are the Legendre polynomials and In are Gegen-
bauer polynomials of order n given by,

Pn-2 - Pn
In 2n-1

The parameters (II, An, and Cn) are unknowns to be
determined from the stress-type boundary conditions
given in Eqs. 4 and 5. As shown by the constitutive
equations 6 and 7, these equations involve components of
velocity and gradients of velocities at-and along-the con-

tour of the cortical shell. For axisymmetric geometries,
the shell contour is specified by the dependence of the
instantaneous segment radius R, on the polar angle 0.

Here, we assume that the model cell body remains nearly
spherical so that the segment radius is independent of the
angle 0. As such, normal and tangential tractions at the
liquid core-cortical shell interface are given by,

An= an- (-p + 2.-:CdR)

\ ~ ~~~~( 9VR + 49O VOl
R 0a aR Rk) (10)

Similarly, the rates of surface deformation in the cortex
become,

V. I -IV,+ +, COS °
R \O0 sin 0

1 t9Oy. O CO 0

RV ° (11)

With Eqs. 10 and 11 and the general solution to the flow
field given by Eq. 9, the balance of forces in the cortical
shell are represented by linear combinations of products
of the arbitrary coefficients (II, An, Cn) and the angular
harmonic functions of 0. These equations are to be
satisfied everywhere along the shell contour. With the
approximation to be used for the pipet entrance region,
boundary conditions along the shell contour are broken at
the entrance to the pipet where a ring-reaction force acts
on the shell at the pipet contact. Inside the pipet, a

uniform pressure is assumed to act across the orifice and
the tangential stress is assumed to be zero, i.e.,

0; O<0<0p
an= Fp; 0 =0 p

Po-Porf; p0<0<r

Fp= (7rR2 * A\P - 27R - P
Cos op siR Ap))P* _

(1 sin0Op)) b(0 0P)

a-, = 0, (12)

where rP is the cortical stress resultant at the pipet
entrance. With conditions given by Eq. 12 and the
balance of forces in the cortex, stress-type boundary
conditions are specified for the entire liquid core exterior
to the pipet.

In general, any finite set of coefficients (II, A, C") will
leave residual errors in these boundary conditions. The
quadratic measure of these errors is given by the integral
(vi, p),

dO sin 0)]2
(E(Vi p) -n /\n m ds + r r- .

+ [A (ds TO cos)] }dA. (13)

Minimization of the functional e with respect to variations
in the arbitrary coefficients leads to the optimal set of
(II, A, C") and an approximate solution to the flow field
that exactly satisfies equations of motion in the liquid
core. Because the error measure in Eq. 13 is quadratic and
because we have assumed constitutive relations linear in
the velocity components, differentiation of the functional
with respect to each coefficient leads to a linear system of
equations that can be easily inverted to obtain the vector
of coefficients.
As mentioned before, we will introduce a pipet

entrance flow approximation that permits the flow field in
the segment exterior to the pipet to be evaluated sepa-

rately from the flow field inside the tube. However if
required, effects of the flow inside the tube could be more
accurately treated by establishing a trial function for the
flow inside the pipet in terms of cylindrical angular
harmonic functions that are exact solutions of the equa-

tions of motion (e.g., see reference 14). For such an

approach, the functional given in Eq. 13 would be the
same except that the integral over the shell contour would
extend over the entire body. The terms in Eq. 13 used to
approximate stress conditions inside the orifice would be
replaced with an integral across the orifice of the square

difference (mismatch) between velocity components
defined by flow fields in the exterior segment and interior
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cylinder regions. Also, a set of arbitrary stresses along the
pipet wall would be required to constrain the radial
velocity to be zero at the tube wall. As an alternative to
this complicated approach, we employ a simple model for
flow inside the pipet that can be used to adequately
represent the kinematics of flow and viscous dissipation
inside the tube.

liquid core relates the axial gradient of the mean pressure
p to the drag at the cortical shell interface,

dpj 2u5
dz Rp (16)

The drag at the interface is derived from the velocity field
by,

Approximate model for flow inside
the pipet
It is important to recognize that flow in the liquid core

inside the pipet will be slightly faster than the axial
velocity of the cortical shell adjacent to the wall. There-
fore, drag at the liquid core-cortical shell interface causes

a drop in pressure from the orifice to the lead cap of the
body inside the tube. (It is assumed that there is no
friction between the cell surface and the pipet wall. This
free-slip behavior is observed in cell aspiration experi-
ments when proper conditions are met.) At the cap of the
projection which leads the flow inside the tube, the axial
velocity in the liquid core is equal to the rate of change of
overall length of the aspirated section and essentially
equal to the velocity of the cortical shell. Thus, there is a

gradient in axial velocity that induces a radial velocity
component in order to satisfy the incompressibility condi-
tion given by Eq. 2. The radial velocity component will be
very small because the flow is primarily axial; hence, we

neglect the radial velocity and introduce a simple axial
flow approximation that satisfies integrated mass and
momentum conservation in the liquid core. In the approx-
imation, the axial flow is assumed to be a superposition of
the velocity of the cortical shell plus a relative velocity
given by a parabolic profile where both components
depend on axial position,

v,(r, z) vm(z) + 2Av(z) * [1 - (r/Rp)2]. (14)

The velocity of the outer cortical shell defines a uniform
velocity vm(z) across the cylinder; the parabolic velocity
component represents the relative velocity of the liquid
core with respect to the cortical shell and thus determines
the drag at the liquid core-cortical shell interface. Mass-
flow conservation shows that these two components of
axial velocity are related by,

Vm(z) + Av(z) = constant L, (15)

where L is the rate of change of projection length inside
the tube. This equation can be expressed in differential
form,

dUm d(Av)
0

dz dz

Conservation of momentum (balance of forces) in the

dvr
as=-A-dr r-R,

= "4"i . Av/Rp,

which yields,

dP= _-8 . Av/R' (17)

(Note: the prefactor "4" in the equation for drag at the
interface is specific to the parabolic profile for the relative
velocity Av(z). Drag at the cortical shell-liquid core
interface can be modulated by changing this prefactor.)
The balance of forces on the cortical shell is simply,

+ f =dz

which can be integrated to determine the tension in the
cortex at the entrance to the pipet as a function of the
difference between volumetric and cortical surface-entry
flow velocities (L, vPi),

P ~4g'IF= T + * (L -vPm) * coth (aL)CY * Rpm
1/2

a =- (K + n)Rp. (18)

Similarly, mass conservation (Eq. 15) and momentum
conservation (Eq. 17) for the liquid core establish the
drop in mean pressure from the orifice to the cap as a

function of entry flow parameters. Therefore, the orifice
pressure that drives fluid from the exterior segment of the
body into the pipet can be derived from the total pipet
suction pressure (AP = po - pp) as,

Po-Pf = (AP - Pe)

P) .
cosh (aL)

2 * (L

Eqs. 18 and 19 couple flow inside the tube to the entry
flow from the exterior segment. The entry flow deter-
mines the rate of growth of the projection inside the pipet
because of mass conservation,

7rR 2. L = Q, (20)
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where the entry flow rate Q is calculated by,

Q= VRdA. (21)
ofice

It is apparent from Eq. 19 that in-flow is driven by the
excess suction pressure above a threshold pressure. The
threshold is the static pressure required to form a hemi-
spherical cap inside the pipet opposed by the constant
cortical tension, i.e.,

Pcr=_ 2(1o/Rp- 1/R,). (22)

Because of the Newtonian property assumed for the
liquid constitutive relation, we can scale time such that all
equations of motion are transformed to universal relations
independent of experimental pressure conditions,

t-t * (AP -Pc)/A-

Similarly, the size-dependence of these equations can be
scaled to universal form by definition of the following
dimensionless ratios,

L -KL/Rp; Rc-lRC/RP

Solution to these universal equations of motion yields the
dimensionless rate of entry into the pipet as a function of
the ratio of pipet radius to instantaneous segment radius,
dimensionless viscosities of the cortical shell, and the
dimensionless projection length,

,u(LRp)1(AP - Pc,) =fg(R c, i, L)- (23)

As we will show, the geometric properties of flow embod-
ied in the functionfg(Rp/Rc, K, i9, L) are represented by a

numerical factor on the order of 0.1 - 1.0 for reasonable
pipet to cell size ratios. Hence, it is apparent that excess

pressure x pipet radius divided by the rate of entry L gives
an immediate estimate of the effective viscosity for a

liquid-like cell.

RESULTS

The objective is to obtain the dimensionless rate of entry
(Eq. 23) for flow of liquid-like cells into tubes with
various pipet to cell size ratios and for various levels of
dissipation in the cortex relative to the liquid core.
Dissipation in the cortex is complicated because there are
two coefficients of viscosity for the independent modes of
planar deformation: dilatation and shear. The ratio of
these coefficients depends on the degree of anisotropy of
the cortical layer. In order to minimize parameterization,
we will only present results for an amorphous model of the
cortex as an immiscible-isotropic liquid layer with thick-

ness 5*2 In this case, the ratio of viscosities for surface
dilatation to shear of the cortex is exactly 3:1 and the
surface viscosities are simply related to a shear viscosity ',

of the isotropic liquid layer by,

K = 3/i, * 6
71 = At. * a

Hence, dissipation in the cortex compared with the liquid
core is related to the ratio of cortical thickness to core
radius and to the ratio of viscosities AsI,u

and dissipation in the cortex can be characterized by a
single dimensionless property i. This particular case is
sufficient to demonstrate how the rate of entry versus
pipet size (for fixed cell dimension) depends on the
dissipation in the cortex relative to the liquid core.
Dissipation in the cortex is expected to alter the flow rate
dependence on pipet size because flow of a liquid surface
into a tube scales differently with tube size than flow of a
liquid half-space into an orifice.

Solution of the coupled equations of motion for the
liquid core and cortical shell is formulated as an algo-
rithm to minimize the functional Eq. 13 with respect to
variations in the coefficients (II, A", C") for a fixed orifice
pressure. This yields values for entry flow rate L and the
tangential velocity of the cortical shell at the pipet
entrance that depend on an arbitrary-constant-axial
velocity. The velocity constant defines the absolute refer-
ence frame for the velocity field. Because the reference
frame is fixed by the pipet, the component of velocity in
the direction normal to the surface at the edge contact
with the pipet must be zero. This requirement plus the
coupling relations (Eqs. 18 and 19) between orifice pres-
sure, shell tension at the pipet entrance, and the kine-
matics of flow into the pipet are used to establish the
orifice pressure and absolute flow rate for instantaneous
values of the radius RC of the exterior segment and
projection length L inside the pipet. In the computations,
flow is modeled at constant suction pressure and is
assumed to commence after the initial formation of a
hemispherical cap (L = Rp) at the threshold pressure; the
projection length is determined as a function of time by
step-wise numerical integration of the instantaneous rate
of entry which depends on instantaneous values of the
segment radius and projection length. Fig. 4 a shows
results for projection length of model cells aspirated into a
small and a large tube versus universal time. It is observed
that the length versus time is nearly linear until the

2The cortex remains anisotropic because it is required to deform by
planar expansion and shear.
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FIGURE 4 Calculated projection lengths for a model cell aspirated into
a small and a large tube versus universal time. The ratio of viscous
coefficients for surface dilatation to shear in the cortical shell was
chosen to be 3:1 with the characteristic dimensionless ratio for dissipa-
tion in the cortex relative to the liquid core given by j = 0.33.

segment radius becomes comparable with the pipet
dimension (as shown in Fig. 4 b) whereupon the cell
moves rapidly up the tube. In order to evaluate the
contribution of dissipation inside the tube to the total
viscous resistance to entry, the same step-wise integration
was carried out for different levels of dissipation in the
tube. Dissipation in the tube was changed by altering the
numerical proportionality "4" between the shear stress at
the cortical shell-liquid core interface and relative veloc-
ity of the liquid at the center of the tube, i.e., the radial
gradient of the axial velocity. As shown in Fig. 5, the
principal effect is to create a slightly nonlinear in-flow
behavior when dissipation inside the tube is lowered.
Little change occurs when dissipation is increased; this is
because flow inside the tube approaches a "plug" profile
within a short distance from the orifice (i.e., the cortical
shell and liquid core approach the same velocity).
Obviously, the free-slip of the cortex at the pipet wall
leads to greatly decreased dissipation in the liquid core.

From the slope of the dimensionless projection length
versus universal time, we obtained the dimensionless flow
rates for entry of liquid-like cells into pipets of various
sizes and for several values of cortical shell dissipation
parameter as shown in Fig. 6. The flow rate increases
strongly with increase in pipet size for fixed segment
dimension. Likewise, dissipation in the cortex causes a

greater reduction in flow rate for small pipets than for
large pipets. Also plotted in Fig. 6 (and later in Fig. 7) is
the solution for radial source-flow (convergent) bounded
by two hemispheres (R = RC and R = Rp) and a free-slip
plane where flow is only opposed by the dynamic stress,
2,gdvr/dr. The dimensionless flow rate for this simple
abstraction is (2 -2[Rp/R,]3)-l which approaches a

limiting value of 0.5 for small orifice sizes. By compari-
son, flow of a half-space fluid into an orifice bounded by a

no-slip plane is characterized by a dimensionless flow rate
of 0.212 (9). The contribution of cortical resistance to
flow is best illustrated by plotting the dimensionless flow
resistance (AP - Pcr)/I(L/Rp) as shown in Figs. 7 and 8.
Fig. 7 shows the flow resistance versus ratio of pipet size
to cell diameter for a two order of magnitude range of the
cortical dissipation parameter i. As illustrated in Fig. 7,
surface (cortical) flow resistance diverges as (Rp/Rc)-1
so even small values of strongly contribute to the total
flow resistance for small tube sizes. As the tube size
approaches the cell diameter, the effect of surface dissipa-
tion diminishes and the total flow resistance approaches
the simple convergent source-flow model described, with
frictionless boundaries. Fig. 8 demonstrates the approxi-
mate superposition of cortical flow resistance and the flow

L/Rp

10

t--(AP - Pcr)//A

FIGURE 5 Calculated projection length of a model cell aspirated into a
medium size tube versus universal time for different levels of dissipation
inside the tube. The effect of flow resistance inside the tube is illustrated
by comparison of the two curves which were calculated with different
numerical proportionalities between the shear stress at the cortical
shell-liquid core interface and the velocity of the liquid along the tube
axis. Ideal Poiseuille flow is characterized by numerical prefactor "4".
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FIGURE 6 Dimensionless flow rates for entry of liquid-like cells into
pipets of various sizes for a two order of magnitude range in cortical shell
dissipation parameter ij (plotted as solid lines). Also shown is the
solution for simple radial source-flow bounded by two hemispheres
(R = RC? and R = Rp) and a free-slip plane where flow is only opposed by
dynamic stress. For comparison, flow of a half-space fluid into an orifice
bounded by a no-slip plane gives an intercept at Rp/RC = 0 of 0.212
(9).

(AP-Pcr)

,< (L/RRp)

FIGURE 8 Dimensionless flow resistance for a specific tube size to cell
size ratios as a function of the cortical dissipation parameter j (solid
lines). For comparison, the dotted lines are superposition of flow
resistances for a cortical shell with an inviscid core plus the apparent
resistance of the liquid core established by the intercepts.

resistance of the liquid core. Here, dimensionless flow
resistance is plotted versus the cortical dissipation param-
eter - for specific pipet size to cell diameter ratios. To first
order, the cortical resistance is simply additive, in propor-
tion to i, to the core flow resistance given by the apparent
intercepts. To test the accuracy of this superposition
approximation, we analyzed the flow resistance of the
cortical shel
added this r

intercepts foi
Clearly, sup

resistances is

(AP-Pcr)

,,u (L/Rp)

FIGURE 7 Dimi
radius ratio for
parameter ij (sc
convergent sour
and R,) bounder

the kinematics of pure surface flow differ from volumetric
flow into an orifice.

CONCLUSIONS

1 assuming an inviscid core (,t o) and We have analyzed the continuous flow of a liquid-like cell
result (15) to the values of the apparent into a micropipet at constant suction pressure. The inte-
r specific pipet sizes (as plotted in Fig. 8). rior of the cell is modeled by a Newtonian liquid with an

erposition of cortical and liquid core flow apparent viscosity for the contents; the liquid core is
not exact but qualitatively similar; however, assumed to be bounded by a capsule made of an aniso-

tropic contractile liquid. When stresses on the capsule
exceed the persistent tension, the model cell flows into the

-Radial Source-Flow
pipet with a rate that is proportional to the pressure in
excess of the threshold established by the tension and

\ o o.01 inversely proportional to the liquid core viscosity. The

0
\

0.1
| rate of entry increases markedly as the pipet size

"* \ * 0.33 approaches the outer segment diameter of the cell. Dissi-
A 1.0 pation in the cortex reduces the entry flow rate differently

5_0 \\\ for small (than large) size pipets. It is important to note
5-0

that even small levels of surface (cortical) dissipation
................................ strongly influence the entry flow resistance for small size

o0 tubes. This indicates that with sufficient experimental0 0.2 0.4 0.6 0.8 1.0 resolution, measurement of cell entry flow with different-
Rp /Rc size pipets could establish the dissipation

ratio. Most importantly, the excess suction pressure x

ensionless flow resistance versus pipet radius to cell pipet radius divided by rate of increase of projection
a two order of magnitude range of cortical dissipation length yields a direct estimate of the magnitude of the
Vid lines). The dotted curve is the flow resistance for apparent viscosity of liquid-like cells. In a companion
*ce-flow between hemispheres (with radii given by Rp paper (2), we compare this model with measurements of
dl by a frictionless plane. flow of white blood cells (granulocytes) into pipets with
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sizes that range from 0.25 to 0.8 times the cell dimension
and for various ratios of suction pressure divided by
threshold pressure to establish estimates of cell viscosities.
Even though we have restricted this analysis (i.e., a
uniform liquid core, a liquid cortex, and a spherical
shape), the variational method outlined here can be
readily extended to more complex situations (e.g., where
the cortex is a viscoelastic material, where the geometry
deviates from a spherical form, and where rigid interior
bodies like a stiff nucleus are present).

This research was supported by National Institutes of Health grant
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