ME 498 / ME 599

Biological Frameworks for Engineers

Gical Frameworks for Engineers

Tissue Engineering

gical Frameworks for Engineers

Tissue Engineering

 A field that seeks to replace, repair or enhance biological function at the scale of a tissue or organ by manipulating cells via their extra-cellular environment.

Central Hypothesis

Cells + ECM + GF = New Tissue

Defect Objectives

- Mechanical
 - Bone, cartilage, ligaments
- Metabolic
 - Replace physiological function (liver)
- Synthetic

ical Frameworks for Engineers

- Deliver secretory products (insulin production)
- Communication
 - Nervous system
- Any combination of the above

Success Stories

- Cornea
 - Corneal epithelial cells pre-seeded in hydrogels and transplanted into rabbit cornea, where remained adherent and proliferated up to 2 weeks
- Liver

gical Frameworks for Engineers

- Hepatocyte systems for extracorporeal and implantable applications
- Implants offers the advantage of permanent liver replacement
- Pancreas
 - Destruction of pancreatic islets, leading to loss of glucose and insulin regulation
 - Transplant microencapsulated islets cells to avoid immune rejection
- Cartilage
 - collagen-glycosaminoglycan templates using chondrocytes
 - chondrocytes grown in agarose gel culture produce tissues with mechanical properties similar to articular cartilage

- Bone
 - synthetic and natural polymers should have optimal strength and degradation properties
 - use bone morphogenetic proteins
 (BMPs) and growth factors (e.g., TGF-b)
- Bladder
 - Seminal attempt in generation of complete organ
 - Collagen scaffolds seeded with autologous bladder epithelial cells on inside and smooth muscle cells on outside
- Skin (most successful application)
 - Implant a composite material of silicone upper layer and chondroitinsulfate and collagen lower layer; prevents liquid loss and induce angiogenesis
 - in vitro culture of keratinocytes (epidermis) from burn patients and multiply 10,000-fold in laboratory; requires 4 weeks

Extracorporeal Method

"Microencapsulation"

Ex: insulin-secreting β -islet cells from pancreas of cadaver

- Encapsulate cells within membrane construct
- Immunoisolate from antibodies and leukocytes
- Implant construct
- Cells secrete product
- Remove when concluded

In Vitro Synthesis

- Cultured Scaffolds
 - Cells seeded onto scaffold in vitro

cal Frameworks for

Engineers

- Cells maintained in culture to expand population and organize
- Device implanted once colony established
- Device degrades and replaced by remodeled tissue

In Vivo Synthesis

- Implanted Scaffold
 - Constructed
 bioactive scaffold
 (ECM, GFs, topology)
 - Implant porous scaffold device

cal Frameworks for Engineers

- Cellular in-growth in vivo (integration and vascularization)
- Scaffold replace by remodeled tissue

Scaffolds

ogical Frameworks for Engineers

Fabrication

- Biological
 - Decellularization Collagen
 - Hydrogels
- Textile Fibers
 - Weaving/Braiding
 - Electrospinning

- Particles
 - Colloidal Sintering
 - Nanoparticle Condensation
- 3D fabrication
 - Stereolithography
 - "Ink" printing

PRINTING ORGANS

Organs could be built up layer by layer by printing clumps of cells onto a gel that turns solid when warmed. Once the cells have fused the gel can be removed simply by cooling it

Questions?

