ME 498 / ME 599

Biological Frameworks for Engineers

ME 498 / ME 599

Tissue Replacement

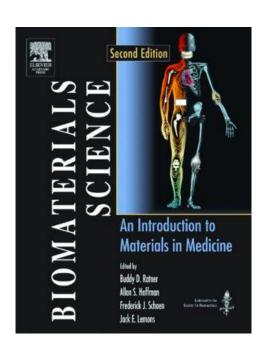
Replacement Body Parts

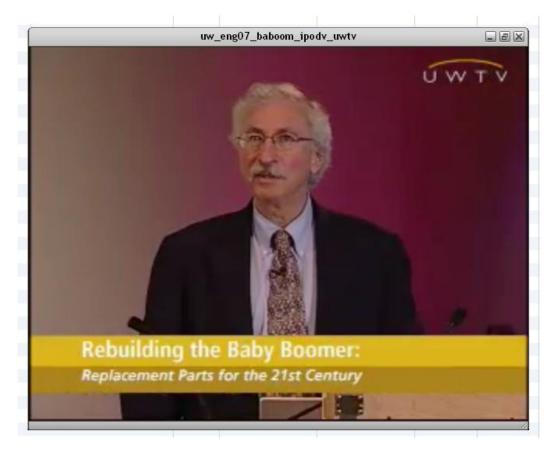
We wear out – we are easily damaged

injury

trauma

Can we build it?
Can we build it better?
Can we build it stronger?
Can we build it to last?

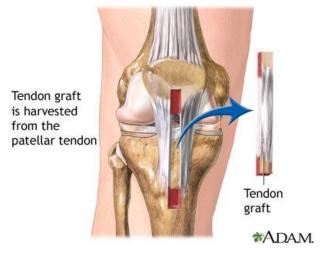




Buddy Ratner (BIOE, ChemE)

What do we need to know?

- Biomechanics:
 - How does the broken part work?
- Bioresponses:
 - Matrix protein
 - Cell
 - Tissue
- Healing:
 - Immune
 - Inflammation
 - Wound closure



Biologic or Synthetic?

Autograft – same person

Allograft – same species

Xenograft – other species

What is a Biomaterial?

 A material intended to interface with biological systems to evaluate, treat, and augment, or replace any tissue, organ, or function of the body.

Common Examples

Contact Lens...

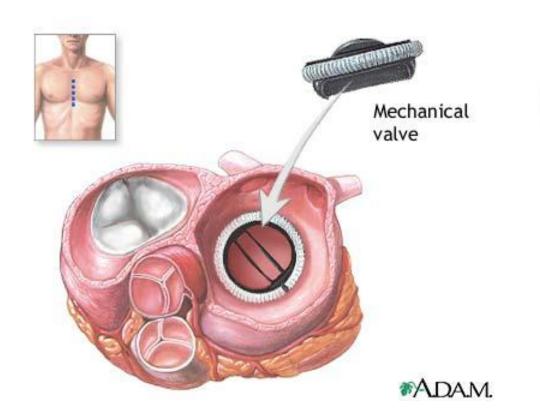
Dental Implants...

• Cosmetic...

Vascular Grafts...

• Joint Replacement...

• Artificial Heart...



Biocompatibility

Heart Valves – 100,000/yr

Correct Material Choices

Inert

(1960-1970)

- Negative immune response
- Artificial materials have few antigens
- Nonspecific interactions
- Hypersensitivity

Bioactive

(1990 – present)

- Promote local healing
- Smart/Instructive materials
- Minimally invasive surgery
- Nanomaterials

Integration with the Body

- After implantation
 - Integration into surrounding tissue
 - Isolation with fibrous encapsulation
- Wound Healing

Integration with the Body

- After implantation
 - Integration into surrounding tissue
 - Isolation with fibrous encapsulation
- Inflammation: angiogenesis and granulation tissue
- Immune response: antigen or nonspecific
- Blood clotting: platelets and thrombosis
- Infection: bacterial or viral invaders
- Tumor formation: excessive proliferation
- Calcification: deposition of Ca₃(PO₄)₂ nodules

Types of Biomaterials

- Metals (formable, strong)
 - Cobalt-chromium alloy
 - Heart valves, dental prostheses, orthopedic plates and joints, vascular stents
 - Gold, platinum
 - Dental fillings, electrodes for cochlear implants
 - Silver-tin-copper alloys
 - Dental amalgams
 - Stainless steel
 - Dental prothesis, orthopedic fixation plats, vascular stents
 - Titanium alloys
 - Heart valves, dental implants, orthopedic joints & screws, pacemakers, vascular stents

Types of Biomaterials

- <u>Ceramic</u> (hard, degradation resistant)
 - Aluminum oxides
 - Orthopedic joint components, load-bearing components, implant coatings, dental implants
 - Bioactive glasses
 - Orthopedic and dental coatings, dental implants, facial reconstruction components, bone graft substitute materials
 - Calcium phosphates
 - Orthopedic and dental coatings, dental implant materials, bone graft substitute materials, bone cement

Types of Biomaterials

- Polymers (natural vs. synthetic, elastomers, hydrogels, composites)
 - Synthetic (PMMA, PDMS, PE, PTFE, PLGA, etc.
 - Contact lenses, cosmetic implants, orthopedic wearing implants, vascular grafts, resorbable meshes and sutures
 - Natural (Collagen, Elastin, Fibrin, Hyaluronic Acid, GAGs, etc.)
 - Matrices: orthopedic repair, tissue engineered parts, skin repair, hemostatic sealants

Biomaterial Properties

- Degradable
 - pH resistant
 - Inflammation resistant
 - Biodegradable for cell/factor release
- Surface properties
 - Mechanical coatings
 - Hydrophobic/philic
 - Roughness or topology
- Bulk properties
 - Strength and stiffness
 - Anisotropy
 - Fatigue
 - Temperature
- Fabrication

Questions?

