BIOLOGICAL FRAMEWORKS FOR ENGINEERS

Session #14 [Cellular Energetics]

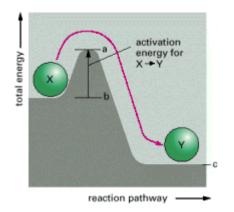
General Objectives:

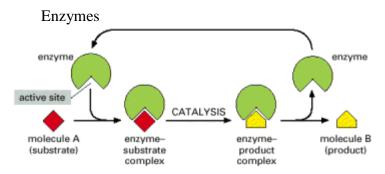
- ✓ Discuss the importance of energy to the body and metabolism
- ✓ Discuss cellular respiration in detail and compare with known systems

Central Framework:

✓ Cellular energetics involves the complex transformation of chemical bonds into free energy for the cell to utilize; nature's storage and handling of energy may provide insight into our engineering of energy solutions

Interactive Activity:

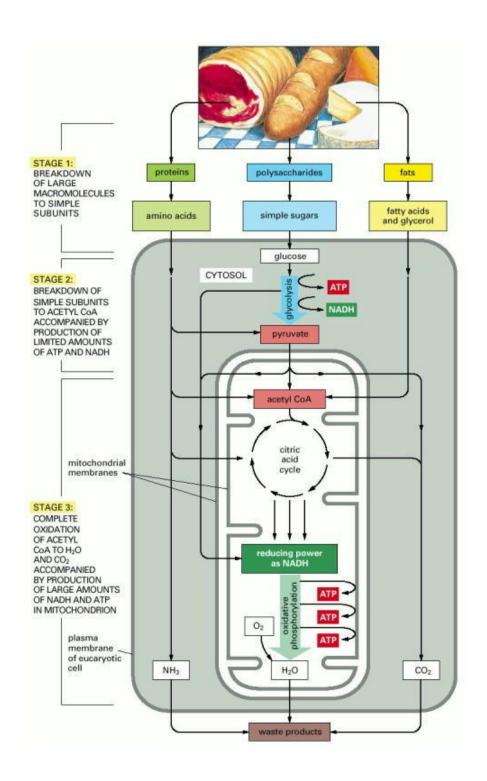

✓ Discussions on cellular processes to produce energy efficiently.


<u>Session Outline:</u>

- A. Basics of Energy
 - 1. Thermodynamics the science of energy transformations (Including within a single cell and an entire ecosystem)

2. Energy Conversion

Fuels (such as a hydrocarbons – gasoline, wood, etc.)
Burned to release heat (chemical energy is converted to heat)
Heat is then converted into useful energy (e.g. electricity)



B. Energy in Biologic Systems

- 1. Cellular Activity Requiring Energy (Why do we need energy?)
 - a. Mechanical work cells can change their physical location or shape and move structures within.
 - b. Transport work cells need to pump substances across the membrane
 - c. Chemical work endergonic process of polymerization (making proteins)
 - d. Organization –

2.	Metabolism –a collection of chemical reactions by which cells convert what they have (food, raw materials) into what they need (energy - ATP).	
	form of other high-energ	rs, etc.) "burned," but energy is recaptured in the gy chemical compounds (e.g., ATP). These e their energy to endothermic processes
3.	ATP (adenosine triphosp	hate) – "energy currency" of the cell
4.	4. Cellular Respiration (breakdown of food and synthesis of ATP)	
С	<u>uel</u> arbohydrate (glucose) at (fatty acid)	Pathways used to break it down glycolysis / Citric Acid (Krebs) cycle / e- transport oxidation / Citric Acid (Krebs) cycle / e- transport

