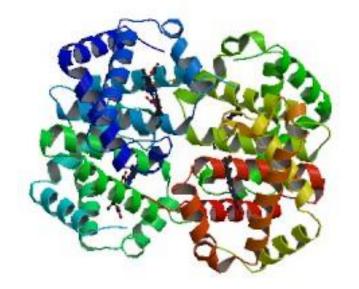
ME 411 / ME 511


Biological Frameworks for Engineers

Class Organization

- HW2 due on Friday
- Lab 1 Protein Structure
 - Bring your laptops on Wed
 - Handouts provided

ME 411 / ME 511

Proteins

Protein Functions

- Different shapes and sizes mediate a diverse array of activities
- Function based on proteins binding to themselves, other proteins, small molecules, or ions
- Life is nothing without the function of proteins...

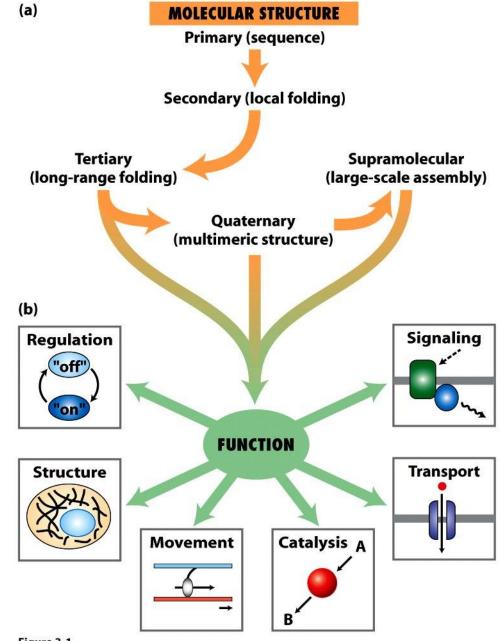
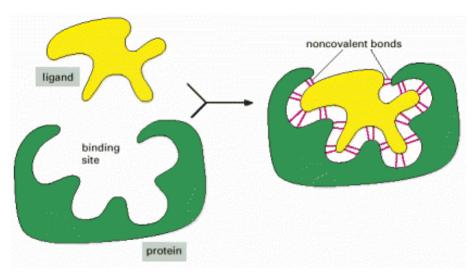


Figure 3-1

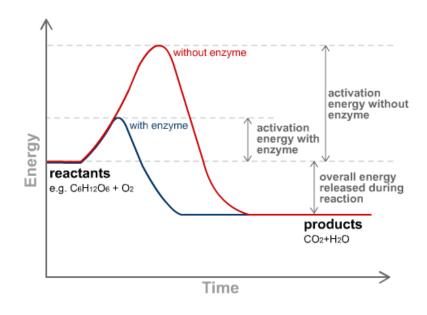
Molecular Cell Biology, Sixth Edition


© 2008 W. H. Freeman and Company

Binding

 Specific binding of a target molecule regulates protein function

Specificity



Enzymatic Function

- Enzyme catalyze the rate of reactions inside a cell
- Substrate target for enzymes that become the products of the reaction

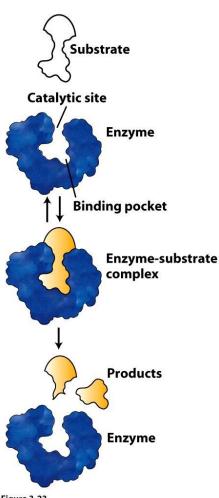
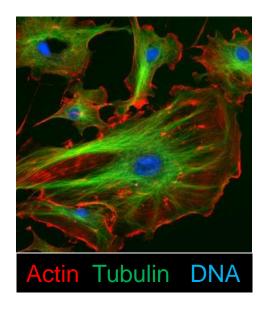



Figure 3-23

Molecular Cell Biology, Sixth Edition
© 2008 W. H. Freeman and Company

Structure

- Cytoskeleton actin, microtubules, intermediate filaments, cadherins, integrins, and others
- Extracellular matrix collagen, elastin, laminin, fibronectin, and others

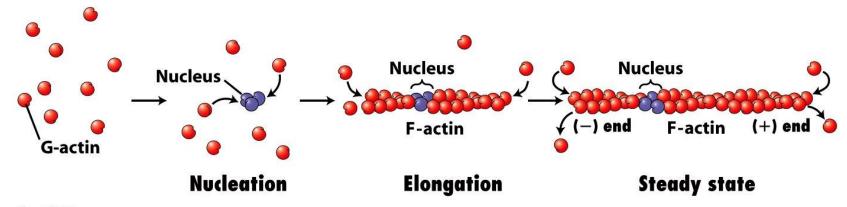


Figure 17-7a

Molecular Cell Biology, Sixth Edition
© 2008 W.H. Freeman and Company

Signaling

Signaling Proteins – molecules and receptors

(a) Residues essential to (b) (c) tight binding with receptor

Growth hormone

Residues essential to (b) (c)

Residues essential to (b) (c)

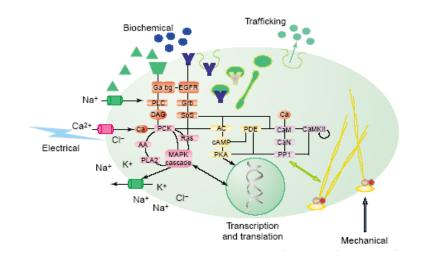
Residues essential to (b) (c)

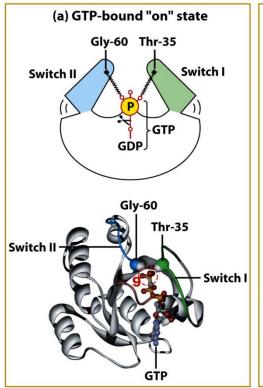
Electrical

Figure 15-3

Molecular Cell Biology, Sixth Edition
© 2008 W.H. Freeman and Company

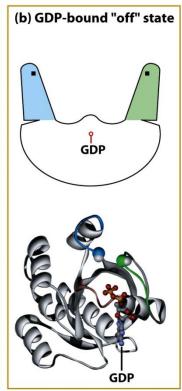
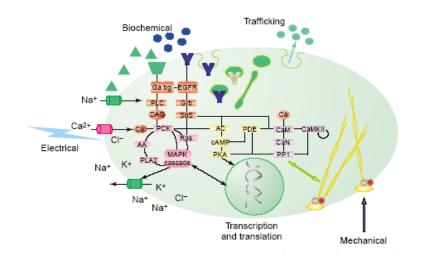
Co-receptor (blue)

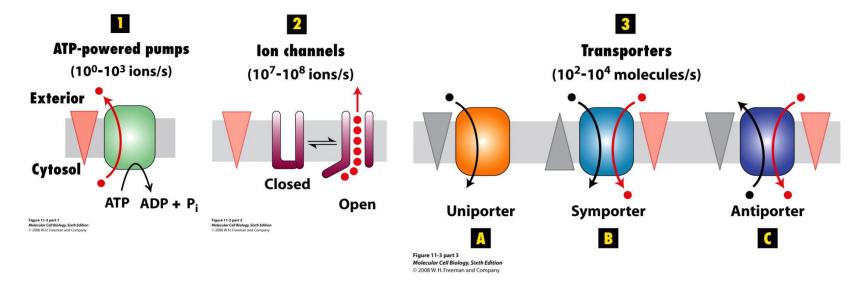

Transcription and translation


Mechanical

Regulation

- Regulatory Proteins –
 kinases, phosphatases,
 GTPases, etc. interpret a
 receptor signal for gene
 expression or cell
 function
- RasGTP has allosteric change in conformation
- Dissociation of GTP to GDP is an "egg timer"

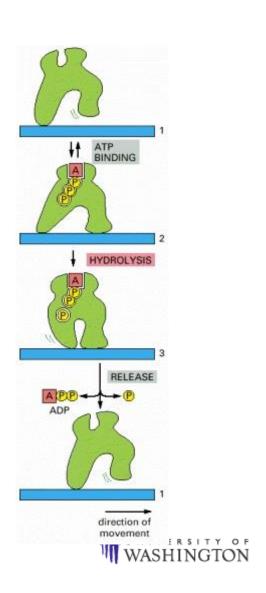




Figure 15-8

Molecular Cell Biology, Sixth Edition
© 2008 W.H. Freeman and Company

Transport

 Membrane transport proteins – control the transport of ions and small molecules across membranes



Motor Proteins

- Allosteric motor protein
- Transition between three conformations allows stepping motion
- Regulated by
 - ATP binding
 - Hydrolysis of ATP to ADP
 - ADP unbinding

Dissociation Constant

<u>Affinity</u>

Binding Reaction:

$$P + L \leftrightarrow PL$$

Dissociation Constant:

$$K_d = [P][L] / [PL]$$

where [] is concentration e.g. molarity (mol/L)

Comparisons

Weak:

$$K_d \ge 10^{-3} M$$

Moderate

$$K_d \approx 10^{-6} M$$

• Tight:

$$K_{cl} \le 10^{-9} M$$

• Biotin-Avidin:

$$K_d \ge 10^{-15} M$$

- Consider a cell having
 - 100 copies of protein P
 - 100 copies of ligand L

- 10⁻¹⁵ L volume
- Reaction at equilibrium

- Consider a cell having
 - 100 copies of protein P
 - 100 copies of ligand L

- 10⁻¹⁵ L volume
- Reaction at equilibrium

$$\frac{[P][L]}{[PL]} = 10^{-6} \text{ mol/L}$$

- Consider a cell having
 - 100 copies of protein P
 - 100 copies of ligand L

- 10⁻¹⁵ L volume
- Reaction at equilibrium

$$\frac{\left(\frac{(100-PL)}{N_A V}\right)\left(\frac{(100-PL)}{N_A V}\right)}{\frac{(PL)}{N_A V}} = 10^{-6} \text{ mol/L}$$

- Consider a cell having
 - 100 copies of protein P
 - 100 copies of ligand L

- 10⁻¹⁵ L volume
- Reaction at equilibrium

$$\frac{\frac{\binom{(100-PL)}{N_A V}\binom{(100-PL)}{N_A V}}{\frac{(PL)}{N_A V}} = 10^{-6} \text{ mol/L}$$

$$10^4 + (-200 - N_A \times V \times 10^{-6})PL + PL^2 = 0$$

- Consider a cell having
 - 100 copies of protein P
 - 100 copies of ligand L

- 10⁻¹⁵ L volume
- Reaction at equilibrium

• If $K_d = 10^{-6} M$, then

$$\frac{\left(\frac{(100-PL)}{N_A V}\right)\left(\frac{(100-PL)}{N_A V}\right)}{\frac{(PL)}{N_A V}} = 10^{-6} \text{ mol/L}$$

$$10^4 + (-200 - N_A \times V \times 10^{-6})PL + PL^2 = 0$$

88 copies of unbound P

88 copies of unbound L

12 copies of PL (P bound to L)

- Consider a cell having
 - 100 copies of protein P
 - 100 copies of ligand L

- 10⁻¹⁵ L volume
- Reaction at equilibrium

- Consider a cell having
 - 100 copies of protein P
 - 100 copies of ligand L

- 10⁻¹⁵ L volume
- Reaction at equilibrium

- If $K_d = 10^{-9} M$, then
 - 8 copies of unbound P
 - 8 copies of unbound L
 - 92 copies of PL (P bound to L)

Questions?

