BIOLOGICAL FRAMEWORKS FOR ENGINEERS

Session #28 [nm-m: Wrap-up]

General Objectives:

- ✓ Discuss the replacement of biologic tissues in the body with synthetic biomaterials or engineered tissues
- ✓ Provide an overview of the strengths and weakness of replacement parts

Central Framework:

✓ When tissues or systems in the body fail, our response is to replace that
tissue with a synthetic or biological analog to perform the function of the
original tissue.

Session Outline:

Replacement Body Parts

Why?

What do we need to know about the natural part to replace it?

Biologic or synthetic?

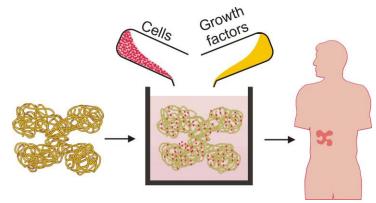
Biomaterial Science

From	Temenoff & N	Λikos, Bion	naterials,	2008	(Ch. 1)	
	http://www.d	coursesma	art.com/9	978013	360378	335/chc	10qr

A wide-ranging field that encompasses aspects of basic biology, medicine, engineering, and material science, that has developed to since World War II with the intent to develop materials that interface with biological systems to evaluate, treat, and augment, or replace any tissue, organ, or function of the body.

evaluate, treat, and augment, or replace any tissue, organ, or function ody.	n of the
Common Examples:	
Materials (Biocompatibility)	
Choosing the Correct Material	
Inert	
Dia a aki ya	
Bioactive	

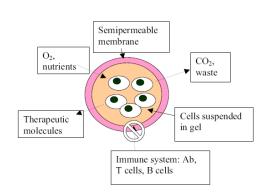
Integration with the Body	
Inflammation	
Immune Response	
Blood Clotting	
Infection	
Tumor formation (neoplasia)	
Calcification	


Types of Biomaterials		
Metals		
Ceramics		
Polymers		
Biomaterial Properties		

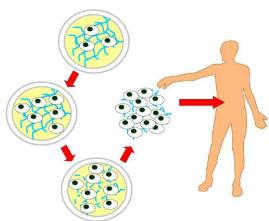
Tissue Engineering

A field that seeks to replace, repair or enhance biological function at the scale of a tissue or organ by manipulating cells via their extracellular environment.

Central Hypothesis:

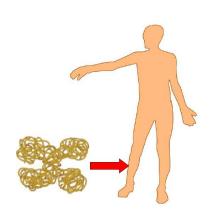

Cells + ECM + GF = New Tissue

Objectives:


Success Stories:

1. Extracorpeal/Microencapsulation Method:

Advantages:


Issues:	
2. In vitro Synthesis Method:	

Advantages:

Issues:

3. In vivo synthesis Method:

Advantages:

Issues:
Scaffolds for Tissue Generation
Purpose: replace functions of extracellular matrix (ECM)
ECM functions:
Materials:
Design issues:
Fabrication:

The Big Picture Scale of Life Coding Signaling Structure-Function System Integration Structural Integration Biology vs. Engineering