ME 411 / ME 511

Biological Frameworks for Engineers

Gical Frameworks for Engineers

Class Organization

- Lab 2
 - Report due Friday
- Exam 1

gical Frameworks for Engineers

- Available online on Friday
- Take home (honor code)
- Due Friday Nov 1
- Tiny Workhorses
 - Solo project
 - No partnerships

Micro and Nano Fabrication

Agical Frameworks for Engineers

In the beginning...

Vacuum Tube

- Gate electron flow
- Warm up

gical Frameworks for Engineers

- Glowed! Bugs!

• Solid State Transistor

Bardeen & Brattain, Phys Rev, 74, 230 (1948)

Integrated Circuits

• Circa 1960

Intel 133 MHz Pentium 3.3 million transistors 0.35 micron Litho 4 layer metalization • Circa 1990

Moore's Law

ogical Frameworks for Engineers

Gordon Moore, "Cramming more components onto integrated circuits", Electronics, April 19, 1965

Microelectronic Processes

- Czochralski Process
- Oxide Growth
- Lithography
- Ion Implantation
- Thin Film Deposition
 - Physical Vapor Dep. (PVD)
 - Chemical Vapor Dep. (CVD)
- Chemical Etching
 - Wet Chemical Etching
 - Dry Plasma Etching
- Chemical-Mechanical Polishing (CMP)

Richard C. Jaeger "Introduction to Microelectronic Fabrication, 2nd Ed." Stephen A. Campbell "The Science and Engineering of Microelectronic Fabrication"

Microfabrication

Bulk Micromachining

- Wet Chemical Etching
- Plasma Etching

cal Frameworks for

Engineers

- Inductively Coupled Plasma
 Reactive Ion Etching (ICP-RIE)
- Deep Reactive Ion Etching (DRIE)
- Surface Micromachining
 - MEMSCAP's MUMPs Process
 - Sandia's SUMMiT Process
 - ADI's optical iMEMS Process
 - LIGA process

Marc Madou "Fundamental of Microfabrication" Nadim Maluf "An Introduction to MEMS Engineering"

Lithography

gical Frameworks for Engineers

- Patterning
 - Photoresist
 - Expose
 - Develop
 - Etch!
- Positive Resist
 - Light makes it soluble in developer
 - Negative Resist
 - Light causes it to polymerize and resist developer

Soft Lithography

- SU-8
 - Epoxy-like negative photoresist
- PDMS
 - Glass-like silicone rubber
- Applications
 - Microcontact printing
 - Microfluidics
 - Cell-based assays

a) Fabricate master mold.

c) Cure PDMS and remove.

d) Punch-out reservoirs and seal onto bottom wafer.

cal Frameworks for Engineers Duffy et al., "Rapid Prototyping of Microfluidic Systems in PDMS," Anal Chem 1998 70:4974

Tools for Cells

Jogical Frameworks for Engineers

WASHINGTON

Sniadecki & Chen (2007) In *Methods in Cell Biology - Cell Mechanics, Vol.*83. Chapter 13:313

* (tridecafluoro-1,1,2,2-tetrahyrooctyl)-1-trichlorosilane

Micro-contact Printing

Sniadecki, N.J., Chen, C.S. (2007) In Methods in Cell Biology - Cell Mechanics, Volume 83. Chapter 13:313-328

Block and Post Technology

A Rapid Measurement of Clot Characteristics

Block and Post Technology

A Rapid Measurement of Clot Characteristics

Block and Post Technology

Nanotechnology

- Nanolithography
 - E-beam lithography
 - Nanoimprint lithography
 - Tip-based lithography
- Molecular Assembly
 - DNA orgami

cal Frameworks for

Engineers

- Alkanethiol monolayers
- Supermolecular assembly
- Nanomaterials
 - Carbon nanotubes
 - Nanoparticles

Nanopost Arrays

ogical Frameworks for Engineers

Diameter: 790 nm Height: 3.4 µm Gap: 1 µm

Diameter: 790 nm Height: 2.5 µm Gap: 1 µm

ogical Frameworks for Engineers

Nanopost Arrays

Questions?

