ME 411/ ME 511

Biological Frameworks for Engineers

gical Frameworks for Engineers

Class Organization

- Exam 1 due
- Hw 4 online

gical Frameworks for Engineers

– Due Wed Nov 7^{th}

ME 411 / ME 511 Cell Energetics

Energy Conversion

(energy from heat of fire) activation energy for X→Y reaction pathway -Smoke +Ashes +Heat $+CO_2$ $+H_2O$

Energetically favorable

ical Frameworks for Engineers

Paper

 $+ O_{2}$

otal energy

Cellulose CO_2 H_2O <u>Nonpolar</u> Covalent: <u>Polar</u> C-C C=O C-H H=O 0-0

Energy Conversion

gical Frameworks for Engineers

Enzymes bind one or two molecules (substrates) in such a way that activation energy is greatly reduced (catalyst)

But we will need active carriers of energy to temporarily store it

Why do we need Energy?

Anaphase

Telophase

membrane

Stratified columnar

HINGTON

Simple columnar

Metabolism

ogical Frameworks for Engineers

ATP

 $\Delta G = -11$ to -13 kcal/mole of usable energy

Harnessing ATP

Energetically UNfavorable

 $\mathrm{A}\text{-}\mathrm{H} + \mathrm{B}\text{-}\mathrm{OH} \rightarrow \mathrm{A}\text{-}\mathrm{B} + \mathrm{H}_2\mathrm{O}$

Energetically favorable

1. B–OH + ATP \rightarrow B–O–PO₃ + ADP 2. A–H + B–O–PO₃ \rightarrow A–B + P_i

Net result: B–OH + ATP + A–H \rightarrow A–B + ADP + P_i

ATP

ATP

ATP

CO₂

02

H₂O

waste products

fats

fatty acids

and glycerol

STAGE 1: proteins polysaccharides BREAKDOWN OF LARGE MACROMOLECULES TO SIMPLE SUBUNITS amino acids simple sugars glucose CYTOSOL STAGE 2: ATP BREAKDOWN OF SIMPLE SUBUNITS - NADH TO ACETYL CoA ACCOMPANIED BY PRODUCTION OF pyruvate LIMITED AMOUNTS OF ATP AND NADH acetyl CoA citric acid mitochondrial cycle membranes STAGE 3: COMPLETE OXIDATION OF ACETYL CoA TO H₂O reducing power AND CO2 as NADH

ACCOMPANIED BY PRODUCTION OF LARGE AMOUNTS

OF NADH AND ATP IN MITOCHONDRION

plasma

membrane _ of eucaryotic cell

NH₃

Jogical Frameworks for Engineers

Glycosis "sugar" + "breakdown"

Glycolysis

gical Frameworks for Engineers

Fatty Acid Oxidation

1) Storage

2) Hydrolysis

3) Conversion

O || R-C-SCoA + AMP + PP_i Fatty acyl CoA

4) Oxidation

logical Frameworks for Engineers

Into the Mitochondria

CellularRespiration

Jogical Frameworks for Engineers

Acetyl Coenzyme A (acetyl CoA) + oxaloacetic acid = Citric Acid
Rearranged, dehydrated, carbon theft, e⁻ stealing _____

3. Yields 3 NADH, 3 H+, FADH₂ = energy to produce ATP

gical Frameworks for Engineers

CellularRespiration

Jogical Frameworks for Engineers

Electron Transport Chain

Electron Transport Chain

- 1. Proteins in mitochondrial membrane pump out H⁺ ions
- 2. Pumps powered by electron transport (e⁻) along membrane
- 3. H⁺ ions fuels F0F1-ATP Synthase which produces ATP
- 4. <u>Result</u>: $H^+ + 2e^-$ from NADH $\rightarrow 3$ ATP and $2H^+ + 2e^-$ from FADH₂ $\rightarrow 2$ ATP

Questions?

