BIOLOGICAL FRAMEWORKS FOR ENGINEERS

Session #11 [nm: Micro and Nano Fabrication]

General Objectives:

- ✓ Introduction to microelectronics, microfabrication, and nanotechnology
- ✓ Identify ways that biology can be better understood with small tools

Central Framework:

✓ Engineering and physics has enabled tools that are able to manipulate objects at the micro and nanoscale

Session Outline:

- I. Transistor
 - a. Vacuum tubes
 - b. Solid State Transistor
- II. Integrated Circuits
- III. Moore's Law
- IV. Microelectronic Processes
 - a. Czochralski Process
 - b. Oxide Growth

	c.	Lithography
	d.	Ion Implantation
	e.	Thin Film Deposition
	f.	Chemical Etching
	g.	Chemical-Mechanical Polishing (CMP)
٧.		Microfabrication
	a.	Bulk Micromachining
	b.	Surface Micromachining
VI		Lithography
	a.	Patterning
	b.	Positive Resist

c. Negative Resist

VII.	Soft Lithography
a.	SU-8
b.	Polydimethylsiloxane
C.	Apps
VIII.	Cell tools
IX.	Nanotechnology
a.	Nanolithography
b.	Molecular Assembly
C.	Nanomaterials