
Thus this simple graphical technique results in a Mohr's circle of strain.   Strain

values at any angular orientation can be found.  Once the principal strains are found the

principal stresses follow directly from the Hooke's relations, considering Poisson's effect:

ε1 =
σ1

E
−

νσ2

E
(11.10)

ε2 =
σ 2

E
−

νσ1

E
(11.11)

or more conveniently, the inverse of these

σ1 =
ε1+νε2( )E

1 −ν2( ) (11.12)

σ 2 =
ε2 +νε1( )E

1−ν 2( ) (11.13)

where E is the elastic modulus and ν  is Poisson's ratio.

The shear stress-strain relation is completely independent of the normal stress-

strain relation and is given by

  τ = Gγ (11.14)

where G is the shear modulus of the material.

Types of Engineering Structures

One type of engineering structure is one which is composed of a few simple

elements but subjected to a complex loading condition as shown in Fig. 11.10.  In this

figure the loading condition involves a torque and bending moment and possibly an

internal pressure.  The stresses due to these loading conditions can be calculated and

appropriately superposed before performing the transformations to determine the

principal stresses.

Another type of engineering structure is one which is composed of many similarly

loaded elements subjected to either a relatively simple or slightly more complex loading

condition.  Trusses (see Fig. 11.11) are an example of one of the major types of

engineering structures, providing practical and economical solutions to many engineering

situations.  Trusses consist of straight members connected at joints (for example, see

Figure 1).  Note that truss members are connected at their extremities only: thus no truss

members are continuous through a joint.
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Figure 11.10  Relatively simple engineering component subjected to a complex loading

condition

In general, truss members are slender and can support little lateral load.

Therefore, major loads must be applied to the various joints and not the members

themselves.  Often the weights of truss members are assumed to be applied only at the

joints (half the weight at each joint).  In addition, even though the joints are actually rivets

or welds, it is customary to assume that the truss members are pinned together (i.e., the

force acting at the end of each truss member is a single force with no couple).  Each truss

member may then be treated as a two force member and the entire truss is treated as a

group of pins and two-force members.

Truss Members

Joints

Figure 11.11  Example of a Simple Truss
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Figure 11.12 Illustration of a bicycle frame as a truss-like structure

A bicycle frame, on first inspection, appears to be an example of a truss (see Fig.

11.12)  Each tube (truss member) is connected to the other at a joint, the principal loads

are applied at joints (e.g., seat, steering head, and bottom bracket), and the reaction loads

are carried at joints as well (e.g., front and rear axles).  Although the joints are not pinned,

a reasonable first approximation for analyzing forces, deflections, and stresses in the

various tubes of the bicycle frame might be made using a simple truss analysis.

Forces in various truss members can be found using such analysis techniques as

the method of joints or the method of sections.  Deflections at any given joint may be

found by using such analysis techniques as the unit load method of virtual work.

An example of the use of the method of joint to solve for the axial loads in each

truss member is as follows.  For the simple truss shown in Figure 11.13 the first step is to
calculate the reactions at joints C and D.  In this case, F∑ =0 and M∑ =0 such that

MC∑ = 0 = PL − RDL ⇒ RD = P ↓  (11.15)

and
F∑ = 0 ⇒ Fx∑ = 0 = −P + RxC ⇒ RxC = P →

                 Fy∑ = 0 = −2P − P + RyC ⇒ RyC = 3P ↑
(11.16)

The resulting free body diagram is shown in Fig. 11.14
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Figure 11.13 Example of a simple truss

Using the method of joints, F∑ =0 at joint D such that

D

BD

CD
P

F∑ = 0 ⇒ Fx∑ = 0 = −FCD ⇒ FCD = 0 →

                 Fy∑ = 0 = P +FBD ⇒ FBD = P ↑
(11.17)

and since FBD pulls on the joint, then the joint must pull back on the member so member

BD is in tension.

A B

C
D

2P
P

L

L

L

L

√2 L

3P

P
P

Figure 11.13 Free body diagram for simple truss
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Using the method of joints, F∑ =0 at joint C such that

C

AC

CD

3P

1

1

√2

P
F∑ = 0 ⇒ Fx∑ = 0 = P −

1

2
FBC ⇒ FBC = 2P ←

                 Fy∑ = 0 = 3P −
1

2
FBC − FAC ⇒ FAC = P ↓

(11.18)

Since FAC pushes on the joint, then the joint must push back on the member so member

AC is in compression.  Furthermore, since FCB pushes on the joint, then the joint must

push back on the member so member CB is in compression.

Finally, using the method of joints, F∑ =0 at joint A such that

A

AC=2P

AB

2P

P

F∑ = 0 ⇒ Fx∑ = 0 = −P + FAB ⇒ FAB = P →
                 Fy∑ = 0 = −2P + 2P ⇒ checks

(11.19)

Since FAB pulls on the joint, then the joint must pull back on the member so member AB is

in tension.

The summary of the member forces is shown in Table 11.1.

Although finding deflections in complex structures is more involved than finding

deflections in simple components, it is not difficult.  A useful technique is the unit load

method in which the displacements can be found from simple deflection equations at

joints which do not have forces acting on them.  The unit load method works for linearly

elastic materials and superposition applies.

Table 11.1 Summary of Truss Member Forces

Member Force

AB P (tension)

AC 2P (compression)

BC √2P (compression)

BD P (tension)

CD 0
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For axially loaded members, the displacement is:

∆ N =
NUNL

EA∫ dx (11.20)

where NU is the axial force in the member due to a unit load applied at the point and

direction of interest, NL is the actual force in the member due to the actual applied load on

the structure, E and A are the elastic modulus and cross sectional area of the individual

member.  The integral sign signifies that the calculated quantities for each member are

summed via integration to give the final total deflection at the point and direction of

interest.

For members subjected to bending moments, the displacement is:

∆ M =
MUML

EI∫ dx (11.21)

where MU is the bending moment in the member due to a unit load applied at the point

and direction of interest, ML is the actual bending moment in the member due to the actual

applied load on the structure, E and I are the elastic modulus and cross sectional moment

of inertia of the individual member.  The integral sign signifies that the calculated

quantities for each member are summed via integration to give the final total deflection at

the point and direction of interest.

For members subjected to torsion, the displacement is:

∆T =
TU TL

GJ∫ dx (11.22)

where TU is the torque in the member due to a unit load applied at the point and direction

of interest, TL is the actual torque in the member due to the actual applied load on the

structure, G and J are the shear modulus and polar moment of inertia of the individual

member.  The integral sign signifies that the calculated quantities for each member are

summed via integration to give the final total deflection at the point and direction of

interest.

For members subjected to transverse shear, the displacement is:

∆ v =
VUVL

GA∫ dx (11.23)

where VU is the transverse shear in the member due to a unit load applied at the point

and direction of interest, VL is the actual transverse shear in the member due to the actual

applied load on the structure, G and A are the shear modulus and cross sectional area of

the individual member.  The integral sign signifies that the calculated quantities for each
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member are summed via integration to give the final total deflection at the point and

direction of interest.

The total deflection due to each of these contributions can then be found by adding

the individual contribution such that

∆ t =
NU NL

EA∫ dx +
MU ML

EI∫ dx +
VUVL

GA∫ dx +
TUTL

GJ∫ dx (11.24)

An example of the unit load method applied to the simple truss example is shown

in Fig. 11.14 in which only the axial loading contributions are required since truss

members are pinned and no bending moments, transverse shear, or torque can be

carried in the members.
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Figure 11.14 Example of application of unit load method to find a deflection in
a simple truss
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