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OBJECTIVES 
 

The objectives of this laboratory exercise are to introduce an experimental stress analysis technique known 
as "photoelasticity", and to apply this technique to measure the stresses induced in a curved beam.   In 
order to use the method of photoelasticity, we must first measure a material property called the "material 
fringe value", denoted fs. The fs will be measured for the polymer H-9l1.  There are several ways of 
measuring fs. The technique used for calibration in this lab is based on a straight beam subjected to four-
point bending. Once fs has been measured, then the stresses induced at several points in a curved beam 
will be measured using photoelasticity.   The experimental measurements will be compared to predicted 
stress levels obtained using analytical solutions as well as numerical solutions from finite element analysis 
(FEA). 

EQUIPMENT USED 

• A total of two test specimens will be used: one straight beam and one curved beam (made from H-911). 

• A four-point loading fixture with load pan and calibrated masses (used to load the straight beam) 

• A line-loading fixture with load pan and calibrated masses (used to load the curved beam) 

• A circular polariscope equipped with a monochromatic (green) light source 

• Video camera, B/W monitor and a video printer 

EXPERIMENTAL PROCEDURES 

STRAIGHT BEAM TESTS 

i) Install the straight beam in the four-point loading fixture (see Figure 1a) 

ii) Attach the load pan (Note: the combined mass of the pan and fixture is ~0.980kg) 

iii) Apply two 10 kg masses, one at a time, to the load pan. 

iv) Use the video camera/printer to record the fringe pattern observed with a "dark field" (i.e., the image 
obtained when the polarizer and analyzer axes are crossed)  

v) Use the video camera/printer to record the fringe pattern observed with a "light field" (i.e., the image 
obtained when the polarizer and analyzer axes are parallel)  

CURVED BEAM TEST 

i) Install the curved beam in the line loading fixture (see Figure 1b) 

ii) Attach the load pan (Note: The combined mass of the pan and the fixture is ~0.454 kg) 

iii) Apply one 5-kg mass to the load pan. (Note; Do not apply more than 5kg at any time) 

iv) Use the video camera/printer to record the fringe pattern observed with a "dark field" (i.e., the image 
obtained when the polarizer and analyzer axes are crossed)  

v) Use the video camera/printer to record the fringe pattern observed with a "light field" (i.e., the image 
obtained when the polarizer and analyzer axes are parallel)  
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1) Preliminaries: Specimen Dimensions  
Complete the following table (Refer to Figure 1-3). 
 

Table 1: Dimensions and Loading for the Straight and Curved Photoelastic Beams 
Straight Beam      Curved Beam 

Total Applied Force Fs 

= gMMM panfixtureweight )( ++   (N) 
  Total Applied Force Fc 

= gMMM panfixtureweight )( ++   (N) 
 

Outer span Lo (mm)   Outer radius ro (mm)  
Inner span Li (mm)   Inner radius ri (mm)  
Height (straight), h (mm)   Height hc = ro-ri (mm)  
Thickness, b (mm)   Thickness, b (mm)  
Momment of Inertia I=bh3/12 (mm4)   Average radius rave= r =(ro+ri)/2 (mm)  
   Straight leg length l (mm)  
 
Note: the calibration and test force must include the mass of the fixture and pan, and the added mass in kg. 
Gravitational constant is g = 9.816 kg m/s2. 

 
 

 
a) Straight Beam     b) Curved Beam 

 
Figure 1 Nomenclature for the a) Straight and b) Curved Beams 
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Figure 2 Sketch of the Straight Beam showing Dimensions 
 
 
 

 
 

Figure 3 Sketch of the Curved Beam showing Dimensions 
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2) Determination of the Material Fringe Value fσ 
Interpretation of 2-D photoelastic fringe patterns is based on the stress-optic law: 

b
Nfσσσ =− )( 21  

where 1σ and 2σ  are the in-plane principle stresses, N is the fringe order, b is the thickness of the 
photoelastic model, and fσ is the material fringe value.  
 
In this lab, the fringe patterns observed in straight beams subjected to pure bending are used to determine 
fσ . Recall the stresses induced in a straight beam with a constant cross section are given by (using the x-y-z 
coordinate system shown in Figure 4): 
 0=== yzxzz ττσ  (Out of plane stresses are assumed to be zero (plane stress assumption)) 

0=yσ    (normal stresses transverse to the beam are ignored) 

I
My

x
−

=σ   (axial stresses are given by the “flexure formula”) 

Ib
VQ

xy =τ   (shear stresses and given by the “shear formula”) 

A free-body, shear force, and bending moment diagram for a straight beam loaded in four point flexure 
loading is shown in Figure 4. Note that this loading arrangement places the central region of the beam in 
“pure bending”. That is, over the central region, the shear force is zero (V = 0) and the bending moment is 
constant (M = Fs (Lo-Li)/4). Consequently in this inner region, the principle stresses are: 

 0,0,
4
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Substituting these results into the stress optics law and rearranging (slightly), we find: 
 NfZ )( σ=  
where: 

 b
I

yLLF
Z ios

4
)( −

=  

Hence fσ  can be determined by plotting the quantity Z versus the fringe order, N and fitting a straight line 
to this data using a linear regression. 
 
If the data behaves “perfectly”, then the slope given by the linear regression will equal fσ  and the intercept 
= 0. Nowadays, linear regression can be performed using scientific hand calculators and computer 
software (such as EXCEL). Equivalently, by completing Table 2 you will, in effect, be performing a linear 
regression of the data obtained for the straight beam. 
 
Perform the following: 
 
a) Enter the required data in columns 1 and 2 of Table 2 by scaling the recorded images using the dark and 
light field polariscope settings (also indicate whether a dark or light field was used in column 5) 
 
b) Complete all calculations indicated in Table 2 thereby determining fσ . 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Free Body, Shear Force and Bending Moment Dia grams for Four-Point Flexure Loading 
 

Table 2: Linear Regression of Straight Beam H-911 Data 
 

Distance y 
(mm) 

Fringe Order* 
N 

N 2 
b

I

yLLF
Z ios

4

)( −
=  N Z Dark/Light 

Field? 

      
      
      
      
      
      
      
      
      
      
      

∑ )(       

*Define the fringes located at negative y positions as “negative” fringes 
 
The total number of data points: n =     
 
The slope (i.e., the material fringe value) is given by: 

( ) ( )∑∑
∑ ∑∑

−

−
=

22
NnN

NZnZN
fs =    

Note: the “handbook” value for the fringe value for the material used here is around 16 kN/m fringe. 
 
The intercept is given by: 

n

NfZ∑ ∑−
= s

intercept =    
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M=Fs(Lo-Li)/4 
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3) Experimentally Measured Stresses in the Curved Beam using Photoelasticity 
At the free edge of selected location of the curved beam (“A” “B” and “C” in Figure 1b), the stress states 
are uniaxial and the stress-optic law can be used to calculate the normal stress using the relation between 
the fringe order at the free edge, the stress optic coefficient for the material, and the specimen thickness. 
 
Fill in the table with the values for the loaded test specimen that are used in the following calculations. 
 

Fringe value counted at point “A”, NA  
Fringe value counted at point “B”, NB  
Fringe value counted at point “C”, NC  
Thickness, b (mm)  

At point “A”, the normal stress: ==
b
Nf A

A
σσ              MPa. 

At point “B”, the normal stress: ==
b
Nf B

B
σσ              MPa. 

At point “C”, the normal stress: ==
b
Nf C

C
σσ              MPa. 

 
4) Analytically Determined Stress at Point “A” Using the Straight Beam Relations 
For the straight part of the beam, a straight beam flexure analysis may be used. The applied bending 
Moment at point “A” is determined as the applied test force Fc=                 N multiplied by the length of 
the straight leg l =                 mm such that lFM cA = =                 N mm.  
The moment of inertia is calculated from the height of the beam hc and the thickness of the beam, b such  

that 
12

3
c

A
bh

I = =                 mm4. 

The distance from the neutral axis to the point “A” is c = hc/2 =                 mm. 

The normal stress at “A” for a straight beam assumption is
A

Astraight
A I

cM
=σ =                      MPa.  

(Confirm that the normal stress at “A” should be tensile (positive stress)) 
 
 
5) Analytically Determined Stresses Using the Curved Beam Relations 
For the curved part of the beam (in this case points “B” and “C”) The analytical calculation must take into 
account the initial curvature of the beam. 
 
a) At the line in the curve connecting “B” and “C”, the radius of the neutral axis for the rectangular cross  

section can be calculated from the outer radius, ro and the inner radius ri such that: 

)/ln( io

io

rr
rr

R
−

= =                      mm. 

The eccentricity, e, can be calculated from the average radius (or centroid) r  and the radius of the 
neutral axis such that e = r - R =                       mm. 
The cross sectional area is calculated from the thickness, b, and the curve height, hc such that  
A = b hc =                       mm2.  
(Note that the distance from the Neutral axis to the point of interest is y = r – R). 

 
 
 
 



b) At point “B”, r = ri ; therefore, yB =ri – R =                       mm.  
The bending moment at point “B” is determined as the applied test force Fc=                 N 
multiplied by the length of the straight leg l =                 mm plus the average radius  
r =(ro+ri)/2 =                 mm such that )( lrFM cB += =                 N mm.  

The normal stress in the curved beam at “B” is 
)( RyeA

yM

B

BBcurved
B +

−
=σ =                      MPa. 

c) At point “C”, r = ro ; therefore, yC =ro – R =                       mm.  
The bending moment at point “C” is the  same as at point “B” such that:  

== BC MM                        N mm.  

The normal stress in the curved beam at “C” is 
)( RyeA

yM

C

CCcurved
C +

−
=σ =                      MPa. 

 
6) Additional Axial Normal Stress Component 
Because the bending moment at “B-C” is produced by a transverse force (that is, not a pure bending 
moment), the total stress at “B-C” has two components: a tensile axial (in the loading direction) stress and 
a tensile/compressive bending stress (computed above). 
a) The tensile axial stress is calculated from the applied test force Fc=                 N and the cross sectional 

area A = b hc =                       mm2.  

The axial stress is ==
A
Fcaxialσ                  MPa. 

(Make sure that this axial normal stress is tensile (i.e. positive stress) 
 
 
7) Comparison of the Total Normal Stress (Bending and Axial) at “B” and “C” 
a) At “B”, the total calculated stress using the curved beam assumption is: 

curved
B

axialcurvedtotal
B σσσ +=)( =                         MPa. 

Percent difference between the actual photoelastically measured stress and the calculated stress is: 

B

B
curvedtotal

B

σ
σσ −)(

100 =                         %. 

b) At “B”, the numerically determined (from the finite element analysis (FEA) solution of Figure 5) 
normal stress is: 

FEA
Bσ =                         MPa. 

Percent difference between the actual photoelastically measured stress and the numerically 

determined stress is: 
B

B
FEA
B

σ
σσ −

100 =                         %. 

c) At “C”, the total calculated stress using the curved beam assumption is: 
curved
C

axialcurvedtotal
C σσσ +=)( =                         MPa. 

Percent difference between the actual photoelastically measured stress and the calculated stress is: 

C

C
curvedtotal

C

σ
σσ −)(

100 =                         %. 

d) At “C”, the numerically determined (from FEA) normal stress is: 
FEA
Cσ =                         MPa. 

Percent difference between the actual photoelastically measured stress and the numerically 

determined stress is: 
C

C
FEA
C

σ
σσ −

100 =                         %. 



8) Comparison of the Normal Stress (bending) at “A” 
a) At “A”, the total calculated stress using the straight beam assumption is: 

straight
Aσ =                         MPa. 

Percent difference between the actual photoelastically measured stress and the calculated stress is: 

A

A
straight
A

σ
σσ −

100 =                         %. 

 
b) At “A”, the numerically determined (from FEA) normal stress is: 

FEA
Aσ =                         MPa. 

Percent difference between the actual photoelastically measured stress and the numerically 

determined stress is: 
A

A
FEA
A

σ
σσ −

100 =                         %. 

 
 

  
  

a) Finite element mesh    b) Stress in the x-direction 
 

  
  

 c) Stress in the y-direction   c) simulated fringe pattern 
 

Figure 5 Finite Element Analysis Solution to the Curved Beam Bending Problem 
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