
OCTAHEDRAL SHEAR STRESS CRITERION (VON MISES) 
 

Since hydrostatic stress alone does not cause yielding, we can find a material plane called 
the octahedral plane, where the stress state can be decoupled into dilation strain energy and 
distortion strain energy1.  On the octahedral plane, the octahedral normal stress solely contributes 
to the dilation strain energy and is  
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This is the average of the three principal stresses. For example, if σ1 = σ2 = σ3 = p where p is the 
pressure, then σh = p.  The remaining stain energy in the state of stress is determined by the 
octahedral shear stress and is given by 
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We expect yielding when the octahedral shear stress is equal to or exceeds a stress criterion value 
for failure for a given material, which is the octahedral stress criterion 0hτ :  
 
 0h hτ τ≥  (failure) (3) 
 0h hτ τ=   (at yielding) (4) 
  

The octahedral stress criterion for say 1080 Al is not likely to be reported in the literature 
so we need to relate it to the axial yield strength σ0. For a given material under axial load where 
σ1 = σ0 and σ2 = σ3 = 0, we assume that yielding occurs when the octahedral shear stress is 
equivalent to the octahedral stress criterion.  This means we can combine Eq. 2 and 4 to get the 
octahedral stress criterion in terms of the yield strength: 
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With 3

0 02 hσ τ= , we expect to observe yielding in a material under 3-D loading when, as before, 

we combine Eq. 2 and 4 to get 
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As a result, we can define the effective stress for von Mises theory to be equivalent to Eq. 6.   
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1 For dilation, stresses are the same in all directions and there is no shear. For distortion, stresses are different in 
magnitude and/or direction and so there exists shear stress. See full derivation in Popov, E.P., 1968 Introduction to 
Mechanics of Solids, 1st edition, Prentice Hall, Englewood Cliffs, NJ. 



 
We can express Eq. 7 in terms of the stress invariants (I1 and I2): 
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Failure is likely when  
 
 0Hσ σ≥   (9) 
 
For plane stress ( 3 0σ = ), we expect yielding when 0Hσ σ=  and so 
 
 
 
 
 
 
 
 
 
The last form in Eq. 10 is an ellipse with its major axis along the σ1 = σ2  line. We can solve this 
and graph it in MATHEMATICA: 
 

Eqn = Solve[σ1^2-σ1*σ2+σ2^2�1,σ2] 
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Eqn[[1]][[1]][[2]] 
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PlotA8Eqn@@1DD@@1DD@@2DD, Eqn@@2DD@@1DD@@2DD<, 9σ1, −2 è!!!!3 í 3,2 è!!!!3 í 3=,
AxesLabel→ 8σ1, σ2<, AspectRatio→ 1E  
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Figure 1. Mathematica code to plot octahedral stress failure for plane stress. 


