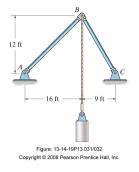
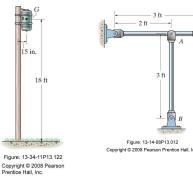

ME 354 Homework #9

1) A steel column made from A-36 (E = 200 GPa) has a length of 5 meters and is fixed at both ends. If the cross-sectional area has the dimensions shown below, what is the critical load for buckling?

2) A brass rod is free at one end and fixed at the other end. If the rod has length L = 2 m, diameter D = 100 mm, and an eccentric load P applied 10 mm above the column axis, determine the greatest allowable load P that can be applied so that rod does not buckle. Also, determine the largest sideways deflection of the rod due to the loading. E = 101GPa, $\sigma_0 = 69$ MPa.


Suggested Problems:


Dowling 7.39	$\tau_i = 26.5 \text{ MPa}$	m = 0.5760	
7.40	$\theta_{\rm c} = 18.7^{\circ}$	$\tau_i = 33.42 \text{ MPa}$	
7.41	$\sigma_{uc}' = -48.5 \text{ MPa}$	σ_{ut} = 10.97 MPa	
7.47	(a) $X_{CM} = 11.2$	(b) $X_{CM} = 10.48$	(c) $X_{CM} = 9.59$
7.48	(a) $X_{CM} = 1.9$ (no fac	(b) p = 32	3.4 MPa

What are the critical loads applied to the following structures that cause buckling?

15 in

18 ft

