
A SPARSE-GROUP LASSO

NOAH SIMON, JEROME FRIEDMAN, TREVOR HASTIE,
AND ROB TIBSHIRANI

Abstract. For high dimensional supervised learning problems,
often using problem specific assumptions can lead to greater ac-
curacy. For problems with grouped covariates, which are believed
to have sparse effects both on a group and within group level, we
introduce a regularized model for linear regression with `1 and `2
penalties. We discuss the sparsity and other regularization prop-
erties of the optimal fit for this model, and show that it has the
desired effect of group-wise and within group sparsity. We propose
an efficient algorithm to fit the model via accelerated generalized
gradient descent, and extend this model and algorithm to convex
loss functions. We also demonstrate the efficacy of our model and
the efficiency of our algorithm on simulated data.

Keywords: penalize, regularize, regression, model, nesterov

1. Introduction

Consider the usual linear regression framework. Our data consists
of an n response vector y, and an n by p matrix of features, X. In
many recent applications we have p >> n: a case where standard
linear regression fails. To combat this, Tibshirani [1996] regularized
the problem by bounding the `1 norm of the solution. This approach,
known as the lasso, minimizes

(1)
1

2
||y −Xβ||22 + λ||β||1.

It finds a solution with few nonzero entries in β. Suppose, further,
that our predictor variables were divided into m different groups— for
example in gene expression data these groups may be gene pathways,
or factor level indicators in categorical data. We are given these group
memberships and rather than just sparsity in β we would like a solution
which uses only a few of the groups. Yuan and Lin [2007] proposed the

1

2NOAH SIMON, JEROME FRIEDMAN, TREVOR HASTIE, AND ROB TIBSHIRANI

group lasso criterion for this problem; the problem is

(2) minβ
1

2

∣∣∣∣∣
∣∣∣∣∣y −

m∑
l=1

X(l)β(l)

∣∣∣∣∣
∣∣∣∣∣
2

2

+ λ
m∑
l=1

√
pl||β(l)||2

where X(l) is the submatrix of X with columns corresponding to the
predictors in group l, β(l) the coefficient vector of that group and pl
is the length of β(l) . This criterion exploits the non-differentiability
of ||β(l)||2 at β(l) = 0; setting groups of coefficients to exactly 0. The
sparsity of the solution is determined by the magnitude of the tuning
parameter λ. If the size of each group is 1, this gives us exactly the
regular lasso solution.
While the group lasso gives a sparse set of groups, if it includes a group
in the model then all coefficients in the group will be nonzero. Some-
times we would like both sparsity of groups and within each group—
for example if the predictors are genes we would like to identify partic-
ularly “important” genes in pathways of interest. Toward this end we
focus on the “sparse-group lasso”

(3) minβ
1

2n

∣∣∣∣∣
∣∣∣∣∣y −

m∑
l=1

X(l)β(l)

∣∣∣∣∣
∣∣∣∣∣
2

2

+ (1−α)λ
m∑
l=1

√
pl||β(l)||2 +αλ||β||1.

where α ∈ [0, 1] — a convex combination of the lasso and group lasso
penalties (α = 0 gives the group lasso fit, α = 1 gives the lasso fit).

In this paper we discuss properties of this criterion, first proposed
in our unpublished note, Friedman et al.. We extend it to logistic and
Cox regression, and develop an algorithm to solve the original problem
and extensions to other loss functions. Our algorithm is based on Nes-
terov’s method for generalized gradient descent. By employing warm
starts we efficiently solve the problem along a path of constraint values.
We demonstrate the efficacy of our objective function and algorithm
on real and simulated data, and we provide a publically available R
implementation of our algorithm in the package SGL. This paper is the
continuation of Friedman et al., a brief note on the criterion.

In Section 2 we develop the criterion and discuss some of its proper-
ties. We present the details of the algorithm we use to fit this model
in Section 3. In Section 4 we extend this model to any log-concave
likelihood in particular to logistic regression and the Cox proportional
hazards model. In Section 5 we show the efficacy of our model and the
efficiency of our algorithm on simulated data.

A SPARSE-GROUP LASSO 3

2. Criterion

Returning to the usual regression framework we have an n response
vector y, and an n by p covariate matrix X broken down into m sub-
matrices, X(1), X(2), . . . , X(m), with each X(l) an n by pl matrix, where
pl is the number of covariates in group l. We choose β̂ to minimize

(4)
1

2n

∣∣∣∣∣
∣∣∣∣∣y −

m∑
l=1

X(l)β(l)

∣∣∣∣∣
∣∣∣∣∣
2

2

+ (1− α)λ
m∑
l=1

√
pl||β(l)||2 + αλ||β||1.

For the rest of the paper we will supress the √pl in the
∑m

l=1

√
pl||β(l)||2

penalty term for ease of notation. To add it back in, simply replace all
future (1− α)λ by √pk(1− α)λ. One might note that this looks very
similar to the elastic net penalty proposed by Zou and Hastie [2005].
It differs because the || · ||2 penalty is not differentiable at 0, so some
groups are completely zeroed out. However, as we show shortly, within
each nonzero group it gives an elastic net fit (though with the || · ||22
penalty parameter a function of the optimal || ˆβ(k)||2).

The objective in (4) is convex, so the optimal solution is characterized
by the subgradient equations. We consider these conditions to better
understand the properties of β̂. For group k, β̂(k) must satisfy

1

n
X(k)>r(−k) = (1− α)λu+ αλv

with r(−k) the partial residual of y, subtracting all group fits other than
group k

r(−k) = y −
∑
l 6=k

X(l)β̂(l)

and where u and v are subgradients of ||β̂(k)||2 and ||β̂(k)||1 respectively,
evaluated at β̂(k). So,

u =

{
β̂(k)

||β̂(k)||2
if β̂(k) 6= 0

∈ {u : ||u||2 ≤ 1} if β̂(k) = 0

vj =

{
sign

(
β̂
(k)
j

)
if β̂(k)

j 6= 0

∈ {vj : |vj| ≤ 1} if β̂(k)
j = 0

With a little bit of algebra we see that the subgradient equations are
satisfied with β̂(k) = 0 if

(5)
∣∣∣∣S (X(k)>r(−k)/n, αλ

)∣∣∣∣
2
≤ (1− α)λ

with S(·) the coordinate-wise soft thresholding operator:

4NOAH SIMON, JEROME FRIEDMAN, TREVOR HASTIE, AND ROB TIBSHIRANI

(S(z, αλ))j = sign(zj)(|zj| − αλ)+.

In comparison, the usual group lasso has β̂(k) = 0 if∣∣∣∣X(k)>r(−k)
∣∣∣∣
2
≤ λ2

Note that r(−k) differs between the group lasso and sparse-group lasso
solutions. However, on a group sparsity level the two act similarly,
though the sparse-group lasso adds univariate shrinkage before check-
ing if a group is nonzero.

The subgradient equations can also give insight into the sparsity
within a group which is at least partially nonzero. If β(k) 6= 0 then the
subgradient conditions for a particular β(k)

i become

1

n
X

(k)>
i

(
Y −

m∑
l=1

X(l)β̂(l)

)
= (1− α)λ

(
β̂
(k)
i

||β̂(k)||2

)
+ αλvi.

This is satisfied for β̂(k)
i = 0 if

(6) |X(k)>
i r(−k,i)| ≤ nαλ

with r(−k,i) = r(−k)−
∑

j 6=iX
(k)
j β̂(k) the partial residual of y subtracting

all other covariate fits, excluding only the fit of X(k)
i . This is the same

condition for a covariate to be inactive as in the regular lasso. Again
however, the partial residuals of the optimal solution are different be-
tween the two models.

For β(k)
i nonzero, more algebra gives us that β(k)

i satisfies

(7) β̂
(k)
i =

S
(
X

(k)
i

>
r(−k,i)/n, αλ

)
X

(k)
i

>
X

(k)
i /n+ (1− α)λ/||β̂(k)||2

.

These are elastic net type conditions as in Friedman et al. [2009]. Unlike
the usual elastic net, the proportional shrinkage here is a function of
the optimal solution, λnet,2 = (1 − α)λ/||β̂(k)||2. Formula (7) suggests
a cyclical coordinate-wise algorithm to fit the model within group. We
tried this algorithm in a number of incarnations and found it inferior
in both timing and accuracy to the algorithm discussed in section 3.
Puig et al. [2009] and Foygel and Drton [2010] fit the group lasso and
sparse-group lasso respectively by explicitly solving for this parameter.
This requires doing matrix calculations, which may be slow for larger
group sizes, so we take a different approach.

A SPARSE-GROUP LASSO 5

From the subgradient conditions we see that this model promotes
the desired sparsity pattern. Furthermore, it regularizes nicely within
each group — giving an elastic net-like solution.

3. Algorithm

In this section we describe how to fit the sparse-group lasso using
blockwise descent — to solve within each group we employ an accel-
erated generalized gradient algorithm with backtracking. Because our
penalty is separable between groups, blockwise descent is guaranteed
to converge to the global optimum.

3.1. Within Group Solution. We choose a group k to minimize over,
and consider the other group coefficients as fixed — we can ignore
penalties corresponding to coefficients in these groups. Our minimiza-
tion problem becomes, find β̂(k) to minimize

(8)
1

2n

∣∣∣∣r(−k) −X(k)β(k)
∣∣∣∣2
2

+ (1− α)λ||β(k)||2 + αλ||β(k)||1

We denote our unpenalized loss function by

`(r(−k), β) =
1

2n

∣∣∣∣r(−k) −X(k)β
∣∣∣∣2

2

Note, we are using β here to denote the coefficients in only group k. The
modern approach to gradient descent is to consider it as a majorization
minimization scheme. We majorize our loss function, centered at a
point β0 by

(9) `(r(−k), β) ≤ `(r(−k), β0) + (β − β0)>∇`(r(−k), β0) +
1

2t
||β − β0||22

where t is sufficiently small that the quadratic term dominates the
Hessian of our loss; note, the gradient in ∇`(r(−k), β0) is only taken
over group k. Minimizing this function would give us our usual gradient
step (with stepsize t) in the unpenalized case. Adding our penalty to
(9) majorizes the objective (8).

M(β) = `(r(−k), β0)+(β−β0)>∇`(r(−i), β0)+
1

2t
||β−β0||22+(1−α)λ||β||2+αλ||β||1.

Our goal now is to find β̃ to minimize M(·). Minimizing M(·) is equiv-
alent to minimizing

(10) M̃(β) =
1

2t
||β−(β0−t∇`(r(−k), β0))||22+(1−α)λ||β||2+αλ||β||1.

Combining the subgradient conditions with basic algebra, we get that
β̂ = 0 if

||S(β0 − t∇`(r(−k), β0), tαλ)||2 ≤ t(1− α)λ

6NOAH SIMON, JEROME FRIEDMAN, TREVOR HASTIE, AND ROB TIBSHIRANI

and otherwise β̂ satisfies

(11)

(
1 +

t(1− α)λ

||β̂||2

)
β̂ = S(β0 − t∇`(r(−k), β0), tαλ).

Taking the norm of both sides we see that

||β̂||2 =
(
||S(β0 − t∇`(r(−k), β0), tαλ)||2 − t(1− α)λ

)
+
.

If we plug this into (11), we see that our generalized gradient step (ie.
the solution to (10)) is
(12)

β̂ =

(
1− t(1− α)λ

||S(β0 − t∇`(r(−k), β0), tαλ)||2

)
+

S(β0−t∇`(r(−k), β0), tαλ).

If we iterate (12), and recenter each pass at (β0)new = (β̂)old, then
we will converge on the optimal solution for β̂(k) given fixed values of
the other coefficient vectors. If we apply this per block, and cyclically
iterate through the blocks we will converge on the overall optimum.
For ease of notation in the future we let U (β0, t) denote our update
formula
(13)

U (β0, t) =

(
1− t(1− α)λ

||S(β0 − t∇`(r(−k), β0), tαλ)||2

)
+

S(β0−t∇`(r(−k), β0), tαλ).

Note that in our case (linear regression)

∇`(r(−k), β0) = −X(k)>r(−k)/n.

3.2. Algorithm Overview. This algorithm is a sequence of nested
loops:

(1) (Outer loop) Cyclically iterate through the groups; at each
group (k) execute step 2

(2) Check if the group’s coefficients are identically 0, by seeing if
they obey ∣∣∣∣S (X(k)>r(−k), αλ

)∣∣∣∣
2
≤ (1− α)λ.

If not, within the group apply step 3
(3) (Inner loop) Until convergence iterate:

(a) update the center by θ ← β̂(k)

(b) update β̂(k) from Eq (13), by

β̂(k) ← U (θ, t)

A SPARSE-GROUP LASSO 7

This is the basic idea behind our algorithm. Meier et al. [2008] have
a similar approach to fit the group lasso for generalized linear mod-
els. For a convergence threshold of ε, in the worst-case scenario within
each group this algorithm requires O(1/ε) steps to converge. However,
recent work in first order methods have shown vast improvements to
gradient descent by a simple modification. As seen in Nesterov [2007]
we can improve this class of algorithm to O(1/

√
ε), by including a mo-

mentum term (known as accelerated generalized gradient descent). In
practice as well, we have seen significant empirical improvement by
including momentum in our gradient updates. We have also included
step size optimization, which we have found important as often the
lipschitz constant for a problem of interest is unknown. The actual
algorithm that we employ changes the inner loop to the following:

(Inner loop) Start with β(k,l) = θ(k,l) = β
(k)
0 , step size t = 1, and

counter l = 1. Repeat the following until convergence
(1) Update gradient g by g = ∇`

(
r(−k), β

(k,l)
)

(2) Optimize step size by iterating t = 0.8 ∗ t until

`
(
U
(
β(k,l), t

))
≤ `

(
β(k,l)

)
+ g>∆(l,t) +

1

2t

∣∣∣∣∆(l,t)

∣∣∣∣2
2

(3) Update θ(k,l) by

(14) θ(k,l+1) ← U
(
β(k,l), t

)
(4) Update the center via a Nesterov step by

(15) β(k,l+1) ← θ(k,l) +
l

l + 3

(
θ(k,l+1) − θ(k,l)

)
(5) Set l = l + 1.

Where ∆(l,t) is the change between our old solution and new solution

∆(l,t) = U
(
β(k,l), t

)
− β(k,l)

Our choice of 0.8 in step 2 was somewhat arbitrary; any value in (0, 1)
will work. This is very similar to the basic generalized gradient al-
gorithm — the major differences are steps 2 and 4. In 2, we search
for a t such that in our direction of descent, the majorization scheme
still holds. In 4 we apply Nesterov-style momentum updates — this
allows us to leverage some higher order information while only calcu-
lating gradients. While these momentum updates are unintuitive they
have shown great theoretical and practical speedup in a large class of
problems.

8NOAH SIMON, JEROME FRIEDMAN, TREVOR HASTIE, AND ROB TIBSHIRANI

3.3. Pathwise solution. Usually, we will be interested in models for
more than one amount of regularization. One could solve over a 2
dimensional grid of these α and λ values, however we found this to be
computationally impractical, and to do a poor job of model selection.
Instead, we fix the mixing parameter α and compute solutions for a
path of λ values (as λ regulates the degree of sparsity). We begin the
path with λ sufficiently large to set β̂ = 0, and decrease λ until we are
near the unregularized solution. By using the previous solution as the
start position for our algorithm at the next λ-value along the path, we
make this procedure efficient for finding a pathwise solution. Notice
that in Eq 5 if

||S
(
X(l)>y/n, λα

)
||2 <

√
pl(1− α)λ

for all l, then β = 0 minimizes the objective. We can leverage the fact
that ||S

(
X(l)>y/n, λα

)
||22− pl(1− α)2λ2 is piecewise quadratic to find

the smallest λl for each group that sets that group’s coefficients to 0.
Thus, we begin our path with

λmax = maxi λi

This is the exact value at which the first coefficient enters the model.
We choose λmin to be some small fraction of λmax (default value is 0.05
in our implementation) and log-linearly interpolate between these two
for other values of λ on this path. While we do not have a theoretically
optimal value for α we have found that using α ∼ 0.95 works well
in problems where we expect overall sparsity but would also like to
encourage grouping.

3.4. Simple Extensions. We can also use this algorithm to fit either
the lasso or group lasso penalty: setting α = 1 or α = 0. For the group
lasso the only change is to remove the soft thresholding in update (13)
and get

U (β0, t) =

(
1− t(1− α)λ

||β0 + t∇`(r(−i), β0)||2

)
+

||β0 + t∇`(r(−i), β0)||2.

For the lasso penalty, the algorithm changes a bit more. There is no
longer any grouping, so there is no need for an outer group loop. Our
update becomes

U (β0, t) = S(β0 + t∇`(y, β0), tλ)

which we iterate, updating β0 at each step. Without backtracking, this
is just the NESTA algorithm in Lagrange form as described in Becker
et al. [2009].

A SPARSE-GROUP LASSO 9

4. Extensions to other models

With little effort we can extend the sparse-group penalty to other
models. If the likelihood function, L(β), for the model of interest is
log-concave then for the sparse-group lasso we minimize

`(β) + (1− α)λ
m∑
l=1

√
pl
∣∣∣∣β(l)

∣∣∣∣
2

+ αλ ||β||1

where `(β) = −1/n log (L(β)). Two commonly used cases, which we in-
clude in our implementation, are logistic regression and the Cox model
for survival data.

For logistic regression we have y, an n-vector of binary responses, and
X, an n by p covariate matrix divided into m groups, X(1), . . . , X(m).
In this case the sparse-group lasso takes the form

β̂ = argminβ
1

n

[(
n∑
i=1

log
(
1 + exp

(
x>i β

))
+ yix

>
i β

)]
+(1−α)λ

m∑
l=1

√
pl
∣∣∣∣β(l)

∣∣∣∣
2
+αλ ||β||1

For Cox regression our data is a covariate matrix, X (again with sub-
matrices by group), an n-vector y corresponding to failure/censoring
times and an n-vector δ indicating failure or censoring for each obser-
vation (δi = 1 if observation i failed, while δi = 0 if censored). Here
the sparse-group lasso corresponds to

β̂ = argminβ
1

n

[
log

(∑
i∈D

(∑
j∈Ri

exp
(
x>j β

)
− x>i β

))]
+(1−α)λ

m∑
l=1

√
pl
∣∣∣∣β(l)

∣∣∣∣
2
+αλ ||β||1

where D is the set of failure indices, Ri is the set of indices, j, with
yj ≥ yi (those still at risk at failure time i).

4.1. Fitting extensions. Fitting the model in these cases is straight-
forward. As before we use blockwise descent. Within each block our
algorithm is nearly identical to the squared error case. While before
we had

`(r(−k), β) =
1

2

∣∣∣∣r(−k) −X(k)β
∣∣∣∣2
2
,

that form is only applicable with squared error loss. We define `k(β(−k), β(k))
to be our unpenalized loss function, `(β), considered as a function of
only β(k), with the rest of the coefficients, β(−k), fixed. In the case of
square error loss, this is exactly `(r(−k), β(k)). From here, we can use
the algorithm in Section 3 only replacing every instance of `(r(−k), β)

by `k(β(−k), β(k)). We would like to note that although the algorithm

10NOAH SIMON, JEROME FRIEDMAN, TREVOR HASTIE, AND ROB TIBSHIRANI

employed is straightforward, due to the curvature of these losses, in
some cases our algorithm scales poorly (eg. Cox regression).

5. Simulated data

We compare the regular lasso to the sparse-group lasso for variable
selection on simulated data. We simulated our covariate matrix X with
different numbers of covariates, observations, and groups. The columns
of X were iid. gaussian, and the response, y was constructed as

(16) y =

g∑
l=1

X(l)β(l) + σε

where ε ∼ N(0, I), β(l) = (1, 2, . . . , 5, 0, . . . , 0) for l = 1, . . . , g, and σ
set so that the signal to noise ratio was 2. The number of generative
groups, g varied from 1 to 3 changing the amount of the sparsity.

We chose penalty parameters for both the lasso and sparse-group
lasso so that the number of nonzero coefficients chosen in the fits
matched the true number of nonzero coefficients in the generative model
(16) (5, 10, or 15 corresponding to g = 1, 2, 3). We then compared
the proportion of correctly identified covariates averaged over 10 tri-
als. Referring to Table 1, we can see that the sparse-group lasso im-
proves performance in almost all scenarios. The two scenarios where
the sparse-group lasso is slightly outperformed is unsurprising as there
are few groups (m = 10) and each group has more covariates than ob-
servations (n = 60, p = 150), so we gain little by modeling sparsity of
groups.

5.1. Timings. We also timed our algorithm on simulated data for lin-
ear, logistic, and Cox regression. Our linear data was simulated as in
section 5. To simulate binary responses, we applied a logit transforma-
tion to a scaling of our linear responses

pi =
exp(5yi)

1 + exp(5yi)

and simulated bernoulli random variables with these probabilities. For
Cox regression, we set survival/censoring time for observation i to be
exp(yi), and simulated our indicators death/censoring independently
with equal probability of censoring and death (ber(0.5)). We used the
same covariate matrix for each 3 regression types. For the smaller data
sets (p = 1500, and p = 2000) we used λmin = 0.2λmax. For the larger
problems, traversing this far along the regularization path was unneces-
sary (the solution with minimal cross-validated error was reached much

A SPARSE-GROUP LASSO 11

Number of Groups in
Generative Model

1 group 2 groups 3 groups

n = 60, p = 1500, m = 10

SGL 0.72 0.36 0.28
Lasso 0.60 0.38 0.31

n = 70, p = 2000, m = 200

SGL 0.68 0.44 0.31
Lasso 0.54 0.30 0.26

n = 150, p = 10000, m = 100

SGL 0.77 0.72 0.52
Lasso 0.76 0.62 0.43

n = 200, p = 20000, m = 400

SGL 0.92 0.78 0.68
Lasso 0.82 0.68 0.52

Table 1. Proportions of correct nonzero coefficient
identifications for standardized and unstandardized
Group Lasso out of 10 simulated data sets.

earlier), and less sparse points in the regularization path are inefficient
to solve, so we used λmin = 0.5λmax. All timings were carried out on
an Intel Xeon 3.33 GHz processor

Referring to Table 2, we see that our algorithm scales reasonably
efficiently. In the linear case, problems can be solved in a matter of
seconds. Logistic and Cox regression run more slowly, however they
still run within minutes on larger datasets. One noteworthy point is
that smaller group sizes allow our algorithm to make better use of active
sets, and this is reflected in runtimes between the 200 and 10 group
cases. Also, one may find the shorter run-times for larger problems

12NOAH SIMON, JEROME FRIEDMAN, TREVOR HASTIE, AND ROB TIBSHIRANI

Number of Groups in
Generative Model

1 group 2 groups 3 groups

n = 60, p = 1500, m = 10

linear 12.8 37.2 37.6
logit 42.9 47.9 49.8
cox 54.5 55.4 57.8

n = 70, p = 2000, m = 200

linear 2.27 6.39 10.1
logit 18.1 28.7 28.2
cox 34.1 39.3 36.2

n = 150, p = 10000, m = 100

linear 7.3 14.3 23.3
logit 17.4 91.1 121
cox 62.13 227.3 217.5

n = 200, p = 20000, m = 400

linear 10.5 14.4 19.9
logit 13.1 55.6 110.5
cox 69.2 219.5 273.8

Table 2. Time in seconds to solve for a path of 20 λ-
values averaged over 10 simulated data sets.

confusing — these problems have smaller group sizes, and because we
need not run too far along the regularization path, the group-size and
group sparsity have a greater effect on runtime than overall problem
size.

6. Discussion

We have proposed and given insight into a method for modeling
groupwise and within group sparsity in regression. We have extended

A SPARSE-GROUP LASSO 13

this model to other likelihoods. We have shown the efficacy of this
method on simulated data, and given an efficient algorithm to fit this
model. An R implementation of this algorithm is available on request,
and will soon be uploaded to CRAN.

7. Supplemental Materials

R Files: The R library for running our fitting code, and the scripts
for running all the timing and accuracy simulations in the manuscript
are available in the supplemental materials online.

References

S. Becker, J. Bobin, and E. Candes. NESTA: A fast and accurate
first-order method for sparse recovery. Arxiv preprint arXiv, 904,
2009.

R. Foygel and M. Drton. Exact block-wise optimization in group
lasso and sparse group lasso for linear regression. Arxiv preprint
arXiv:1010.3320, 2010.

J. Friedman, T. Hastie, and R. Tibshirani. A note on the group lasso
and sparse group lasso. arViV:1001.0736v1.

J. Friedman, T. Hastie, and R. Tibshirani. Applications of the lasso
and grouped lasso to the estimation of sparse graphical models. sub-
mitted, 2009.

L. Meier, S. van de Geer, and P. Bühlmann. The group lasso for logistic
regression. Journal of the Royal Statistical Society B, 70:53–71, 2008.

Y. Nesterov. Gradient methods for minimizing composite objective
function. CORE, 2007.

A. Puig, A. Wiesel, and A. Hero. A multidimensional shrinkage-
thresholding operator," statistical signal processing. In SSP ’09.
IEEE/SP 15th Workshop on Statistical Signal Processing, pages 113–
116, 2009.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society B, 58:267–288, 1996.

M. Yuan and Y. Lin. Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society, Series B,
68(1):49–67, 2007.

H. Zou and T. Hastie. Regularization and variable selection via the
elastic net. Journal of the Royal Statistical Society B, 67(2):301–
320, 2005.

	1. Introduction
	2. Criterion
	3. Algorithm
	3.1. Within Group Solution
	3.2. Algorithm Overview
	3.3. Pathwise solution
	3.4. Simple Extensions

	4. Extensions to other models
	4.1. Fitting extensions

	5. Simulated data
	5.1. Timings

	6. Discussion
	7. Supplemental Materials
	References

