GENERATION AND INTERACTION OF
COMPRESSIVE STRESS-INDUCED
MICROCRACKS IN CONCRETE

by

KAMRAN MOSTASHAR NEMATI

Committee in charge:

Professor Paulo J. M. Monteiro, Chair
Professor Ben C. Gerwick, Jr.
Professor Robert Brady Williamson
Professor Alice M. Agogino

DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF CALIFORNIA, BERKELEY
BERKELEY, CALIFORNIA
The dissertation of Kamran Mostashar Nemati is approved:

Professor Paulo J.M. Monteiro, Chair

Date

Professor Ben C. Gerwick, Jr.

Date

Professor Robert Brady Williamson

Date

Professor Alice M. Agogino

Date

University of California at Berkeley

1994
Generation and Interaction of Compressive Stress-Induced Microcracks in Concrete

Copyright© (1994)

by

Kamran Mostashar Nemati
ABSTRACT

Generation and Interaction of Compressive Stress-Induced Microcracks in Concrete

by

Kamran Mostashar Nemati

Doctor of Philosophy in Civil Engineering
University of California at Berkeley
Professor Paulo J. M. Monteiro, Chair

This thesis presents the results of experimental and theoretical studies of the micromechanical behavior of concrete under different loading conditions. Cylindrical specimens of normal and high-strength concrete were subjected to testing under uniaxial and confined compression. An alloy with a low melting point was used as a pore fluid. At the stress or strain of interest, this alloy was solidified to preserve the stress-induced microcracks as they exist under load.

Scanning electron microscopy (SEM) was employed to capture images from the cross sections of the concrete specimens. These images were then used to study the generation, orientation, density, length, and branching of the compressive stress-induced microcracks and the effect of confinement on microcrack behavior. The microcracks were generated by a number of different mechanisms and had an orientation that was generally within 15 degrees of the direction of the maximum applied stress. The density, average length, and branching of the microcracks decreased as the confining stress increased. The confining stress showed a pronounced influence on interfacial cracks, also known as transition zone cracks, which occur at the interface of cement paste and aggregate. The amount of interfacial cracking decreased significantly as the confining stress was increased. Stereological analysis which interprets three-dimensional structures by means of two-dimensional sections, was used on the computerized images. Crack orientation, crack surface area, and crack length...
were determined stereologically. The resulting stereological measurements indicated that the crack orientation, surface area, and length decreased as the confining stress increased.

Three micromechanical models, the differential scheme, the Mori-Tanaka method, and a crack growth simulation model were used to examine the experimentally obtained data against the theoretically developed micromechanical models. The final modulus of elasticity for the concrete specimens was calculated using the first two models, based on the measured crack densities, which gave an approximation that was very close to the actual measured moduli. The crack growth model was used to generate and propagate microcracks for uniaxial and fully confined cases, and it also revealed behavior similar to that shown in the experimental results.

Paulo J. M. Monteiro
Chairman, Thesis Committee
To my parents
ACKNOWLEDGMENT

During my years of graduate study at Berkeley many people have given me support, guidance, and friendship. Foremost among these is my adviser, Professor Paulo Monteiro. He has shared his great creative and analytical skills with patience, endless encouragement, and generosity. It has been my very good fortune to have had such a conscientious and inspirational adviser.

Much credit also goes to my mentor and exemplar, Professor Ben C. Gerwick, Jr., who inspired me to study concrete. I owe a great deal of my success to Professor Gerwick. I would also like to thank the other members of my research committee, Professors Robert Brady Williamson and Alice M. Agogino for their detailed and thoughtful comments.

I wish to express appreciation to Professor Neville G. W. Cook of the Department of Mining Engineering and Dr. Larry Myer of Lawrence Berkeley Laboratory for their guidance in designing the test apparatus and for advice on experimental procedures. Special thanks goes to Mr. William MacCracken of the Department of Civil Engineering for his insight and ingenuity in conducting experiments.

The hospitality of Dr. Karen Scrivener during my many visits to the Imperial College of Science and Technology in London is greatly appreciated. Dr. Scrivener’s advice was extremely valuable and pivotal. I also wish to thank Dr. Stephen Laing for his help in computer programming and for his friendship.

I am grateful to both Professor John Kemeny of the University of Arizona, and Dr. Robert Zimmerman of Lawrence Berkeley Laboratory, for their help with micromechanical modeling of fractures in concrete.

I would like to express my deepest gratitude and appreciation to ICF Kaiser Engineers, Inc. In particular I wish to thank Mr. Michael Jones and Mr. Richard Nunes for their patience, support, and encouragement, as well as for allowing me to maintain full-time employment while completing my graduate work. I could not have finished my doctorate without their support. I would also like to
thank Diane Michelle Williams, Dr. Edgar Becker, Mike Phillips, and Steve Sims for their friendship and encouragement.

The years I have spent in residence at the International House at Berkeley have constituted the best time of my life. I am exceedingly lucky to have made such great friends there as Peter Kennedy, Orla Feely, Jerry Murphy, Cormac Conroy, Bo Petterson, Nathalie Richart, Michel Chalhoub, Catherine Faure, Dariush Mirfendereski, Alison Green, Nils Tarnow, Hamid Savoj, and Yutaka Tanaka.

Finally, I would like to thank my late father and my mother for their constant concern, support, and encouragement throughout my life. There is no better way to express my appreciation than to dedicate this thesis to my parents.
TABLE OF CONTENTS

Abstract ..1
Acknowledgments .. iv
Table of Contents .. vi
List of Figures .. x
List of Tables .. xvi
Nomenclature ... xvii

CHAPTER 1 INTRODUCTION

1.1 Background ... 1
1.2 Methods of Study of Microcracking .. 4
 1.2.1 Early Methods .. 5
 1.2.2 Proposed Method ... 8
1.3 Objectives ... 9
1.4 Summary of the Chapters .. 10

CHAPTER 2 EXPERIMENTAL TECHNIQUE

2.1 Introduction ... 12
2.2 Concrete Specimens ... 12
2.3 Confinement .. 15
CHAPTER 3 SCANNING ELECTRON MICROSCOPY, IMAGE ANALYZER, AND STEREOLOGY

3.1 Introduction ... 33
3.2 Scanning Electron Microscopy ... 33
3.3 Image Analyzer ... 35
3.4 Stereology and Concrete ... 37
 3.4.1 Introduction .. 37
 3.4.2 Basic Measurements .. 37
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.2.1 Number of point intersections, P_L</td>
<td>38</td>
</tr>
<tr>
<td>3.4.2.2 Surface-to-Volume ratio, S_r</td>
<td>39</td>
</tr>
<tr>
<td>3.4.2.3 Length of line per unit area, L_A</td>
<td>41</td>
</tr>
<tr>
<td>3.4.3 Degree of Orientation</td>
<td>44</td>
</tr>
<tr>
<td>3.4.4 Application of Stereology To Concrete Fracture Mechanics</td>
<td>45</td>
</tr>
</tbody>
</table>

Chapter 4 Observation Results and Analysis of Data

4.1 Introduction .. 50
4.2 Characterization of Microcrack Initiation .. 50
4.3 Orientation of Microcracks .. 56
4.4 Microcrack Density Distribution .. 64
4.5 Microcrack Length Distribution .. 72
4.6 Microcrack Branching ... 81
4.7 Interfacial Cracks .. 83

Chapter 5 Micromechanical Models for Concrete

5.1 Introduction .. 91
5.2 Elastic Modulus Models .. 91
 5.2.1 Differential Scheme ... 92
 5.2.2 Mori-Tanaka Model .. 96
5.3 Crack Growth Simulation Model .. 98
 5.3.1 The Maximum Energy Release Rate Criterion, G-Criterion 98
 5.3.2 Crack growth and Propagation .. 100
5.3.3 Review of Analytical Micromechanical Model ..102
5.3.4 Distribution of Microcracks in the Material ...102
5.3.5 Parameters Used in the Crack Growth Model ...105
5.3.6 Program Overview ..108
5.3.7 The Crack Growth Simulation Model Results ...110

CHAPTER 6 SUMMARY, CONCLUSION, AND RECOMMENDATIONS

6.1 Summary of the Work Performed ...114
6.2 Summary of Findings and Conclusion ...115
6.3 Recommendations for Future Research ...117

REFERENCES ..119

APPENDICES ...129

Appendix A: Experiments Conducted ...130
Appendix B: Image Analyzer Computer Programs ...134
Appendix C: Test Cell Design ..155
LIST OF FIGURES

Figure 1.1 Polished section from a concrete specimen ..2
Figure 1.2 Diagrammatic representation of the transition zone and bulk cement paste in concrete ... 3
Figure 2.1 Normal-strength concrete specimens used in the experiments ... 14
Figure 2.2 Pedestal .. 18
Figure 2.3 Vessel .. 19
Figure 2.4 Piston ... 20
Figure 2.5 top Cap.. 20
Figure 2.6 Wood’s metal .. 21
Figure 2.7 Diagram of the test apparatus .. 23
Figure 2.8 Heating scheme diagram .. 24
Figure 2.9 Schematic diagram of the test assembly ... 24
Figure 2.10 Pouring molten metal into the vessel .. 25
Figure 2.11 Inserting the thermocouple into the top cap 25
Figure 2.12 Placing the heater and the insulation .. 26
Figure 2.13 Temperature and load control devices .. 26
Figure 2.14 Nitrogen dispensed through a high pressure regulator 27
Figure 2.15 Post-experiment cooling of the cell ... 27
Figure 2.16 Extrusion of concrete specimen .. 28
Figure 2.17 Raising the vessel .. 28
Figure 2.18 Raising the vessel by aircraft cable ..28
Figure 2.19 Specimen prior to and after Wood’s metal injection28
Figure 2.20 Axial cut of the concrete cylinder ..29
Figure 2.21 Lateral cut of the concrete cylinder ..29
Figure 2.22 Specimen extraction ...29
Figure 2.23 A lateral section showing macrocracks filled with metal alloy ...30
Figure 2.24 Specimen placed on glass and aluminum base for SEM study30
Figure 2.25 Specimen extraction and numbering scheme ..31
Figure 3.1 Scanning electron microscope (SEM) and Kontron Image Analyzer ..35
Figure 3.2 Flow chart for stereological steps ...36
Figure 3.3 Model of deriving the relationship \(S_v = 2P_L \)39
Figure 3.4 Geometry involved in the determination of the probability that random normals lie between \(\theta \) and \(\theta + d\theta \)40
Figure 3.5 Model of deriving the relationship \(L_A = \left(\frac{\pi}{2} \right) P_L \)42
Figure 3.6 Geometry involved in the determination of the probability that elementary segments lie between \(\theta \) and \(\theta + d\theta \)43
Figure 3.7 A SEM backscatter image ..46
Figure 3.8 Establishing threshold in histogram ..46
Figure 3.9 Wood’s metal identification by establishing threshold levels in histogram ..47
Figure 3.10 Crack network ..47
Figure 3.11 Scrap command ..47
Figure 3.12 Binary-thinned image of the crack network in concrete48
Figure 3.13 Array of straight parallel lines .. 49

Figure 4.1 SEM micrographs from the no-load experiment 51

Figure 4.2 SEM micrographs from the partially confined experiment 52

Figure 4.3 SEM micrographs of microcracks propagating from a pore 52

Figure 4.3 SEM micrographs of aggregate cracking 53

Figure 4.5 SEM micrographs from the no-load experiment for high-strength concrete specimen ... 54

Figure 4.6 SEM micrographs from the partially confined experiment for high-strength concrete .. 55

Figure 4.7 Average crack orientation for normal-strength concrete 56

Figure 4.8 Average crack orientation for high-strength concrete 57

Figure 4.9 Crack orientation for normal-strength concrete 59

Figure 4.10 Crack orientation for high-strength concrete 59

Figure 4.11 Number of intercepts for smoothed cracks 60

Figure 4.12 Number of intercepts for smoothed cracks 60

Figure 4.13 Rose of the number of intersections diagrams for high-strength concrete ... 61

Figure 4.14 Rose of the number of intersections diagrams for normal-strength concrete ... 62

Figure 4.15(a) SEM micrographs showing crack tips at higher magnification 63

Figure 4.15(b) SEM micrographs showing crack tips at higher magnification 64

Figure 4.16 Crack density, \(\Gamma \), as a function of confinement for normal-strength concrete ... 66

Figure 4.17 Crack density, \(\Gamma \), as a function of confinement for high-strength concrete ... 66
Figure 4.18 Diagrammatic representation of crack length and crack density at confined and unconfined portions of Experiment #3......67

Figure 4.19 Diagrammatic representation of crack length and crack density at confined and unconfined portions of Experiment #4......68

Figure 4.20 Number of cracks as a function of confinement for normal-strength concrete..68

Figure 4.21 Number of cracks as a function of confinement for high-strength concrete...69

Figure 4.22 Percent cracked area as a function of confinement for normal-strength concrete..69

Figure 4.23 Percent cracked area as a function of confinement for high-strength concrete...70

Figure 4.24 Crack surface area (S_v) as a function of confinement condition for normal-strength concrete ..71

Figure 4.25 Crack surface area (S_v) as a function of confinement condition for high-strength concrete ..71

Figure 4.26 Crack length as a function of confinement condition for normal-strength concrete ..72

Figure 4.27 Crack length as a function of confinement condition for high-strength concrete ...72

Figure 4.28 Histogram of microcrack length distributions for the no-load experiment of the normal-strength concrete73

Figure 4.29 Histogram of microcrack length distributions for the uniaxial experiment of the normal-strength concrete73

Figure 4.30 Histogram of microcrack length distributions for the partially confined (1) experiment of the normal-strength concrete74

Figure 4.31 Histogram of microcrack length distributions for the partially confined (2) experiment of the normal-strength concrete74

Figure 4.32 Histogram of microcrack length distributions for the fully confined experiment of the normal-strength concrete75
Figure 4.33 Histogram of microcrack length distributions for the no-load experiment of the high-strength concrete ...75
Figure 4.34 Histogram of microcrack length distributions for the uniaxial experiment of the high-strength concrete ...76
Figure 4.35 Histogram of microcrack length distributions for the partially confined experiment of the normal-strength concrete76
Figure 4.36 COV of crack length as a function of confinement for normal-strength concrete...77
Figure 4.37 COV of crack length as a function of confinement for high-strength concrete...78
Figure 4.38 Stress intensity factors due to local tension P and confining stress, σ_3 ..78
Figure 4.39 Stereological measurement of crack length as a function of confinement condition for normal-strength concrete specimens ..80
Figure 4.40 Stereological measurement of crack length as a function of confinement condition for high-strength concrete specimens80
Figure 4.41 3-way and 4-way crack branching nodes.................................81
Figure 4.42 Crack branching nodes as a function of confinement for normal-strength concrete ...82
Figure 4.43 Crack branching nodes as a function of confinement for high-strength concrete ...82
Figure 4.44 The flow chart for interfacial crack identification computer program...84
Figure 4.45 Interfacial crack in the normal concrete specimen subjected to uniaxial loading...85
Figure 4.46 Scrap with the higher upper limit for the area range...............86
Figure 4.47 Scrap with the lower upper limit for the area range86
Figure 4.48 Close the image in Figure 4.47 ..86
Figure 4.49 Open the image in Figure 4.48..86
Figure 4.50 Scrap the image in Figure 4.49..87
Figure 4.51 Correlate every pixel which is both in figure 4.46 and 4.5087
Figure 4.52 Correlating every pixel that is either in Figure 4.46 or 4.49
but not common to them...87
Figure 4.53 Scrap the image in Figure 4.52..87
Figure 4.54 Scrap the image in Figure 4.52..88
Figure 4.55 Crack smoothing of the image in Figure 4.54.................................88
Figure 4.56 Effect of confinement on interfacial microcracks of normal-
strength concrete...89
Figure 4.57 Effect of confinement on interfacial microcracks of high-
strength concrete...90

Figure 5.1 Schematic diagram of an idealized crack..93
Figure 5.2 (a) Plate with crack 2a; (b) Load-displacement diagram100
Figure 5.3 Computer flow chart for the Du model calculations102
Figure 5.4 Histogram of entire microcrack length distribution for the
no-load experiment on normal-strength concrete104
Figure 5.5 The random cracks generated in concrete specimen...................105
Figure 5.6 Concrete specimen boundary input in algorithm..........................108
Figure 5.7 Rectangular boundary ...109
Figure 5.8 Crack propagation simulation for uniaxial loading111
Figure 5.9 Crack propagation simulation for fully confined condition112
LIST OF TABLES

Table 2.1 Normal-strength concrete mix design ..13
Table 2.2 High-strength concrete mix design ...13
Table 2.3 Experiments conducted...29
Table 3.1 List of basic stereological symbols and their definition38
Table 4.1 Number, length, and orientation of microcracks57
Table 4.2 Data from the stereological analysis ...58
Table 4.3 Crack density for different loading conditions..65
Table 4.4 Coefficient of variation of cracks length..77
Table 4.5 Percentage of interfacial cracks..89
Table 5.1 Modulus of elasticity obtained from micromechanical Models..............98
Table 5.2 The microcrack lengths used in the Du model104
Table 5.3 Material properties of concrete specimen ..107
NOMENCLATURE

Å Angstrom

f_c' Ultimate Strength

FM Fineness Modulus

GPa Giga Pascal

K Coefficient of Permeability

KN Kilo Newton

lb Pound

HRWR High Range Water Reducer

LEFM Linear Elastic Fracture Mechanics

MPa Mega Pascal

μm Micrometer (10^6 m)

MSA Maximum Size Aggregate

pcf Pounds per Cubic Feet

pcy Pounds per Cubic Yard

psi Pounds per Square inch

RHA Rice Husk Ash

SEM Scanning Electron Microscope

yd Yard