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Consumer Versus Resource Control in
Freshwater Pelagic Food Webs
Michael T. Brett* and Charles R. Goldman

Models predict that food-web structure is regulated by both consumers and resources,
and the strength of this control is dependent on trophic position and food-web length.
To test these hypotheses, a meta-analysis was conducted of 11 fish (consumer)-by-
nutrient (resource) factorial plankton community experiments. As predicted, zooplankton
biomass was under strong consumer control but was weakly stimulated by nutrient
additions; phytoplankton biomass was under strong resource control with moderate
control by fish. However, the phytoplankton and zooplankton responses to nutrient
additions did not follow theoretical predictions based on the number of trophic levels in
the food web.

The nature of the factors regulating food-
web structure has been a very active area of
ecological research (1, 2) since the classic
paper by Hairston, Smith, and Slobodkin (3)
was published in 1960. In aquatic systems,
food-web interactions strongly influence
fisheries production, biogeochemical cy-
cling, and ecosystem responses to anthropo-
genic eutrophication. A recent quantitative
summary of the freshwater trophic cascade
(4) literature showed that planktivorous fish
treatments result in decreased herbivore
(zooplankton) and increased primary pro-
ducer (phytoplankton) biomass (5). In addi-
tion, phytoplankton response to the cascade
is weakly dampened and highly variable,
with weak responses in two-thirds of the
experiments and very strong responses in the

other experiments (5). Still, many questions
regarding the dynamic nature of food-web
interactions remain unresolved (1, 2). In
particular, what is the relative strength of
consumer and resource control in pelagic
food webs (6), and how do food webs re-
spond to changes in system productivity un-
der different food-web configurations (7)?

The debate over top-down (consumer)
versus bottom-up (resource) control repre-
sents a synthesis of the known impact of
nutrient regulation of primary producers (8)
and higher trophic levels (9), and the more
recent emphasis on consumer control of
trophic levels through the cascade (4). In
essence, the debate centers on whether her-
bivore and plant communities are regulated
through predator control of herbivore abun-
dance or through nutrient control of prima-
ry production. McQueen and colleagues (6)
predicted bottom-up control is stronger at
the base of the food web, and top-down
control is stronger at higher trophic levels.

For example, the zooplankton should be
more strongly controlled by zooplanktivo-
rous fish than by nutrients, whereas phyto-
plankton biomass should be primarily con-
trolled by nutrient availability and to a
lesser extent by higher trophic levels.

Oksanen et al. (7) developed a series of
models to explore the theoretical relation-
ship among ecosystem productivity, pat-
terns of biomass accrual, and the number of
trophic levels in that ecosystem. This pre-
dicted “a stepped pattern of biomass accru-
al” (2) across productivity gradients (10). In
food webs with an odd number of trophic
levels, increases in primary production
should lead to increased biomass for odd-
numbered trophic levels and no change in
biomass for even-numbered trophic levels.
Conversely, in food webs with an even
number of trophic levels, increases in pri-
mary production should lead to increased
biomass for even-numbered trophic levels
and no change in biomass for odd-num-
bered trophic levels.

We assembled eight studies (11) that
reported the results of 11 independent me-
socosm experiments employing factorial nu-
trient addition and zooplanktivorous fish
treatments. Simple criteria were used to
decide which studies to include in our anal-
ysis (12). Six of the studies used simple
fish-by-nutrient designs, and two used slight
modifications of this design (13). In five
studies, zooplankton community biomass
values were obtained directly, and in three
studies, zooplankton biomass was estimated
using abundance and individual biomass
data (14). All phytoplankton community
biomass values were taken directly from the
respective studies.

Mesocosms are classic experimental de-
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vices for studies of planktonic ecosystems,
which make it easier to replicate and con-
trol treatments (in particular fish abun-
dance). Mesocosms do, however, place con-
straints on spatial and temporal scale and
prevent some important processes such as
sediment–lake water exchange of nutrients.
Whole lake investigations have optimal
spatial scale and ecological relevance, but
they present problems with reproducibility,
cost, and access to suitable study sites. The
time scale of the experiments we summa-
rized (1 to 4 months, Table 1) is comparable
to the period of major events in the typical
seasonal succession of temperate planktonic
ecosystems (15) and is many times longer
than typical doubling times for common
planktonic organisms.

To our knowledge, we have included all
studies examining zooplankton and phyto-
plankton community responses to zoo-
planktivorous fish and nutrient addition treat-

ments which fit our simple criteria (11, 12).
Each experiment was considered a single
blocked set of observations for our analysis.
For the purposes of graphic display and to
calculate treatment means, the data were
transformed by calculating the logarithmic
ratio of the control (no fish, no nutrients) to
the other treatments accordingly: response 5
log(treatment mean/control mean). For anal-
ysis of variance (ANOVA), the data from
each experiment were transformed accord-
ingly: responseANOVA 5 log(treatment
mean/geometric mean), where geometric
mean equals the geometric mean of all four
treatments. This transformation was used for
the ANOVA because ANOVA assumes sim-
ilar variance in each cell (16) and the former
transformation results in zero variance for
the control treatment cell. To test the re-
sponse of two trophic level food webs to
increases in system productivity, we com-
pared the control treatments to the nutrient

treatments. To test the response of three
trophic level food webs to increases in system
productivity, we compared the fish treat-
ments to the fish-plus-nutrient treatments.

Our analysis provided generally strong
agreement with the top-down and bottom-
up control hypothesis of McQueen and col-
leagues (6). We found top-down (fish) con-
trol had a much stronger impact on zoo-
plankton biomass than did bottom-up (nu-
trient) control (Table 2 and Fig. 1). The
zooplankton had a geometric mean decrease
of 72% in biomass in the fish treatments and
an increase of 24% in the nutrient treat-
ments. Our analysis found both top-down
and bottom-up control of phytoplankton
community biomass. However, nutrient con-
trol of phytoplankton biomass was substan-
tially stronger than top-down control (Table

Fig. 1. The response of the zooplankton and phy-
toplankton community biomass to the fish and
nutrient treatments. The values plotted were cal-
culated as the log10-transformed ratio of themean
treatment biomass divided by the mean control
biomass. The line through the middle of the box
shows the median, and the dot shows the mean
of the distribution. The outer edges of the box
correspond to the 25th and 75th percentiles, and
the “whiskers” to the 10th and 90th percentiles.

Table 1. The size of the experimental mesocosms, length of the experiments, samples averaged and source of the data for the 11 fish-by-nutrient experiments
(11) summarized. Exp., experiment; Encl., enclosure.

Study Exp.
Encl.
size
(m3)

Exp.
length
(weeks)

Samples
averaged

Measure of biomass
(zooplankton) Source Measure of biomass

(phytoplankton) Source

Lynch and Shapiro Exp. 2 1.4 6 3 Crustacean biomass Fig. 6 Biovolume Table 8
Vanni 1980 1 4 5 Crustacean biomass Tables 1 & 2 Biovolume Fig. 2
Vanni 1981 1 4 6 Crustacean biomass Tables 1 & 2 Biovolume Fig. 3
Drenner et al. Exp. 1 5.5 3 4 Crustacean biomass Fig. 2 Chlorophyll Fig. 2
Faafeng et al. Spring 7 3 3 Total biomass Fig. 2 Chlorophyll Fig. 1
Faafeng et al. Summer 7 4 4 Total biomass Fig. 2 Chlorophyll Fig. 1
McQueen et al. Exp. 1 700 15 9 Total biomass Fig. 2 Chlorophyll Fig. 2
Markosova and Jezek Exp. 1 110 17 10 Large daphnid biomass Fig. 5 Biovolume Fig. 5
Qin and Culver Exp. 1 0.6 4.5 5 Crustacean biomass Fig. 1 Biovolume Fig. 1
Proulx et al. Shallow 150 10 6 Total biomass Table 2 Biovolume Fig. 2
Proulx et al. Deep 600 10 6 Total biomass Table 2 Biolvolume Fig. 2

Table 2. The results of an ANOVA for the 11 fish-by-nutrient experiments. The ANOVA design used was
the classic randomized block design without within-block replication (23), with the separate experiments
serving as randomized blocks. Because this design lacks within-block replication, the F statistic is
calculated as MSmodel/MSinteraction (23), with MSinteraction being the overall interaction term for fish 3
nutrients 3 experiment. Percent variance explained refers to the portion of sum of squares attributable
to that model.

Source df Sum of
squares F test P value Variance

(%)

Zooplankton
Fish 1 3.467 401.73 0.0000 52
Nutrients 1 0.086 9.96 0.0101 1
Fish 3 nutrient 1 0.000 0.02 0.9595 0
Experiment 10 0.000 0.00 1.0000 0
Fish 3 experiment 10 2.478 28.71 0.0000 37
Nutrient 3 experiment 10 0.521 6.04 0.0044 8
Fish 3 nutrient 3 experiment 10 0.086 1

Phytoplankton
Fish 1 0.345 12.30 0.0056 12
Nutrients 1 1.540 54.88 0.0000 54
Fish 3 nutrient 1 0.057 2.04 0.1844 2
Experiment 10 0.000 0.00 1.0000 0
Fish 3 experiment 10 0.321 1.14 0.4192 11
Nutrient 3 experiment 10 0.323 1.15 0.4139 11
Fish 3 nutrient 3 experiment 10 0.281 10
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2 and Fig. 1). Phytoplankton biomass had a
geometric mean increase of 179% in the
nutrient treatments and a 77% increase in
the fish treatments.

There were generally weak statistical asso-
ciations between the spatial and temporal
scale of the experiments and the strength of
the zooplankton and phytoplankton responses
to the fish and nutrient treatments (17). One
potential explanation for the lack of a strong
positive zooplankton biomass response to the
nutrient treatments is that the experiments
we summarized were simply too short for the
zooplankton to respond to the increased phy-
toplankton supply. However, the zooplankton
actually had somewhat stronger biomass re-
sponses in the shorter experiments (17), and
common zooplankton are capable of at least
nine population doublings during a 21-day
experiment (assuming r 5 0.30). Further-
more, Elliott and colleagues found, in simple
food-chain experiments, that zooplankton can
achieve equilibrium values well within the
temporal scale of the experiments summarized
in our analysis (18). This suggests that the
lack of a strong positive zooplankton biomass
response to the nutrient treatments was not
due to life history constraints on zooplankton
growth. We believe the nutrient treatments
failed to markedly stimulate zooplankton bio-
mass, because the phytoplankton stimulated
by these treatments may have been difficult to
ingest, digest, or were nutritionally inade-
quate, or a combination of these factors (19).

Our analysis did not support the predic-
tions of Oksanen and colleagues (7) for how
food webs of different lengths should respond
to increases in system productivity. They pre-
dicted that in a two trophic level food web,
increases in primary production would result
in increased zooplankton biomass and no
change in phytoplankton biomass. We found
adding nutrients to two level pelagic food
webs resulted in greatly increased phytoplank-
ton biomass and little change in zooplankton
biomass. For three trophic level food webs,
they predicted increases in the system primary
production would result in increased phyto-
plankton biomass and no change in zooplank-
ton biomass. These responses were to some
extent observed in the present analysis. How-
ever, the increase in phytoplankton biomass
in the two trophic level food web (at 179%)
was larger than the increase in phytoplankton
biomass seen in the three trophic level food
web (at 101%). These data suggest the re-
sponse of phytoplankton and zooplankton
biomass to nutrient additions was unrelated to
the number of trophic levels in the food web.

The results of our analysis contrast with
the experimental results of Wootton and
Power (20) who found generally good agree-
ment with the predictions of Oksanen et al. in
a three trophic level food web. However, Lei-
bold and Wilbur (21) showed that the bio-

mass responses of two trophic level food webs
was dependent on the dominant herbivore
species in the system. The lack of a general
relationship between ecosystem primary pro-
duction and food-web length in planktonic
food webs can be further emphasized by con-
sidering some of the world’s least productive
aquatic food webs. Whereas the model of
Oksanen and colleagues predicts that ecosys-
tems with low primary production will only
have one or two trophic levels, ultraoligotro-
phic lakes and open oceans have between
three and five functional trophic levels (22).
Our results suggest that, under certain condi-
tions, increased primary production due to
nutrient inputs may not be efficiently trans-
ferred to herbivorous zooplankton biomass.
To gain a better understanding of food-web
interactions, it is important to determine
which factors regulate the efficiency at which
primary production is converted to herbivore
biomass.
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