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Abstract. In this paper, we propose and analyze models of self policing in online com-
munities, in which assessment activities, typically handled by firm employees, are shifted
to the “crowd.” Our underlying objective is to maximize firm value by maintaining the
quality of the online community to prevent attrition, which, given a parsimoniousmodel of
voter participation, we show can be achieved by efficiently utilizing the crowd of volunteer
voters. To do so, we focus onminimizing the number of voters needed for each assessment,
subject to service-level constraints, which depends on a voting aggregation rule. We focus
our attention on classes of voting aggregators that are simple, interpretable, and imple-
mentable, which increases the chance of adoption in practice. We consider static and
dynamic variants of simple majority-rule voting, with which each vote is treated equally.
We also study static and dynamic variants of a more sophisticated voting rule that allows
more accurate voters to have a larger influence in determining the aggregate decision. We
consider both independent and correlated voters and show that correlation is detrimental
to performance. Finally, we take a system view and characterize the limit of a costless
crowdvoting system that relies solely on volunteer voters. If this limit does not satisfy
target service levels, then costly firm employees are needed to supplement the crowd.
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1. Introduction
A unique feature of the modern video game industry is the ability of gamers to play together online, which
results in large online communities of gamers: Burns (2013) reports that Microsoft’s Xbox Live service has
more than 48 million users, the Steam gaming network has 65 million users, and the Playstation network has
110 million users. These online communities typically have terms of service (ToS) that prescribe acceptable
online behavior, which can be violated, and thus, policing is required to preserve the value of the community/
firm. Firms can assign internal employees to handle this policing in-house, or they can outsource it; Chen
(2014) reports on a workforce of more than 100,000 in the Philippines that provide “content moderation” for
online communities.

In contrast to employee-led or outsourced policing, some firms have recently started to utilize the online
community itself (i.e., the crowd) in judging offensive behavior. In August of 2013, the Xbox Live service
announced its “Enforcement United” program (enforcement.xbox.com/United), by which gamers vote on
whether flagged content violates the Xbox Live ToS. League of Legends is another online gaming platform
with more than 32 million active monthly users (MacManus 2012), that utilizes self-policing online com-
munities via its Tribunal program (leagueoflegends.com/tribunal). Note that, as of this writing, we are not
aware of any crowdvoting applications on the Steam and Playstation networks.

In Figure 1, we provide a screenshot of a sample assessment in the Enforcement United program. This
assessment stems from a complaint about an in-game alias “Sprinkle Bear” selected by one user, which
another user found offensive. A distinct set of gamers are randomly selected as a jury for this assessment, and
they each individually see the view in Figure 1. Each voter must click either the green “Not Offensive” button
if they believe “Sprinkle Bear” is acceptable in the Xbox Live ToS or the red “Offensive” button otherwise.
These assessments have a short time limit (e.g., one minute) and can clearly be done quickly. This structure
results in minimal effort on the part of the voter, which allows multiple assessments to be performed in quick
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succession by a given voter; this observation motivates our model of voter participation, detailed in Section 2.1.
Finally, a voter is allowed to press the blue “Skip” button, skipping a given assessment; for simplicity, we omit
this option from our analysis.

In this paper, we introduce and study models of self-policing systems that are motivated by these innovative
applications. We first take the firm’s perspective of maximizing firm value subject to minimum service-level
constraints. This view leads us to the notion of efficient crowdvoting, by which we identify the voting
mechanism(s) that require the fewest voters per assessment. More specifically, we propose and analyze
numerous voting mechanisms, both static and dynamic, and determine the probability that the crowd is able
to correctly determine the underlying truth, which we relate to the service level; these mechanisms are
rigorously developed using ideas from basic probability theory, random walks, and sequential hypothesis
testing. Furthermore, we limit our attention to classes of voting mechanisms that are simple, interpretable, and
implementable; by doing so, we increase the likelihood of adoption in practice and creating value for a firm.

These voting mechanisms are then fed into optimization models in which the number of voters per as-
sessment is minimized (which leads to maximized firm value), for each mechanism, subject to bounds on error
probabilities. Our paper effectively shows that, for self-policing online communities, small crowds (of juries)
are best.

1.1. Broad Applicability
Crowdvoting, the focus of our paper, utilizes the crowd’s judgment to evaluate content. There are many
potential applications beyond the gaming context described, which we now discuss. In these crowdvoting
examples, users judge other users, which is a form of peer review.

Twitter and Facebook are two of the largest social media platforms. As of this writing, Twitter has 321
million active monthly users (https://www.statista.com/). Similarly, Facebook currently has more than 2.3
billion active monthly users (newsroom.fb.com/company-info/). As in the video game communities, there are
ToS-violating behaviors on these social media online communities that result in complaints. For example,
O’Brien (2016) reports that Facebook receives 1 million user violation reports per day. There is also evidence
that these firms are not doing a good job at content moderation: Tiku and Newton (2015) report that Twitter’s
CEO stated, “We suck at dealing with abuse.” To the best of our knowledge, neither of these firms use
crowdvoting to moderate content; indeed, Facebook is hiring more employees to screen offensive content
(Goel 2017). Perhaps self policing, as described in our paper, would be a better answer. A recent Washington
Post article (Dwoskin 2018) describes how Facebook is rating users on their trustworthiness on a zero to one
scale; therefore, applying the results in this paper would be a simple matter for Facebook.

A related potential application of the crowdvoting models studied in this paper is the detection of “fake
news,” intentionally false and misleading news articles, typically disseminated via social media platforms,
such as Twitter and Facebook. Recent studies suggest that fake news influenced the outcome of the 2016 U.S.
presidential election (Blake 2018). Facebook, for instance, recognizes the deleterious influence of fake news and
is attempting to reduce its impact (Thompson 2018). To the best of our knowledge, there is little academic
study of identifying fake news; one exception is Papanastasiou (2020), which studies the platform’s optimal
inspection policy. Crowdvoting, as studied in our paper, provides another potential solution.

Figure 1. Screenshot of Enforcement United
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There are similar applications of crowdvoting in product development. Threadless (https://www.threadless.com/
designs/) is a firm that allows the crowd to vote on t-shirt designs and then manufactures the most popular
ones. Instead of evaluating whether a complaint is a violation of ToS, in this example, crowdvoting is used to
evaluate whether a product will be successful or not. Similarly, PepsiCo utilized crowdvoting in multiple
campaigns to determine new flavors of its Mountain Dew soft drink: (a) in 2007–2008, DEWmocracy resulted in
the introduction of the new Voltage flavor, (b) in 2009–2010, DEWmocracy II resulted in the new WhiteOut
flavor, and (c) in 2013, DEWmocracy Canada resulted in Voltage being declared the winner (outperforming
White Out). Note that there can also be overlap between crowdvoting and other types of crowdsourcing: for
example, in addition to submitting ideas on Dell’s IdeaStorm website (i.e., ideation), users can also vote
(promote/demote) on other users’ ideas.

Social news websites also utilize crowdvoting. Digg.com and Reddit.com are two news aggregators, on
which users submit and vote (promote/demote) on news articles, and the more popular ones are displayed
more prominently on the websites. A similar application of crowdvoting even appears in the field of aca-
demic writing: http://tex.stackexchange.com is an online forum on which any user can pose questions about
Latex, any user can answer the questions, and any user can vote (promote/demote) a question or answer.
The more popular combinations are then displayed more prominently on the website. Furthermore, http://
stackexchange.com/sites is an aggregator that lists many similar sites on varied topics, such as computer
programming, photography, languages, personal finance, and (even) homebrewing. Thus, similar to the
product-development examples, crowdvoting is currently being used to assess the popularity of news articles,
questions, and answers.

It is also possible that other prominent crowdsourcing projects could benefit from crowdvoting. For in-
stance, the development of the operating system Linux is perhaps one of the most successful examples of
crowdsourcing. However, new modifications/additions to Linux must be approved by a small management
team led by Linux founder Linus Torvalds himself; see the Linux Information Project at http://www.linfo.org/
for further details. Perhaps this management team should consider crowdvoting the approval process using
the results in our paper; after all, if the crowd is capable of improving Linux, perhaps they are also capable of
approving modifications.

Finally, our results could also be applied in the context of academic peer review. After an academic paper is
submitted to a journal for possible publication, a small number of referees and editors are recruited (typically
without pay) to assess the appropriateness of a submission. The results in this paper could be used to de-
termine a proper number of referees as well as to more appropriately and formally aggregate each reviewer’s
vote on the suitability of the paper for publication. Detailed examples of such an application are provided in
the sequel.

1.2. Literature Review
Our crowdvoting research is related to political science, economics, and crowdsourcing research, and we
position our work with respect to each of these areas.

A classic result of political science is Condorcet’s jury theorem, which states that, if n voters each in-
dependently choose a correct alternative (out of two choices) with a known probability p > 0.5, then the
probability that a majority vote is correct is greater than p and converges to one as n → ∞. This famous
theorem was generalized to correlated votes with voter-specific accuracies pi by Boland (1989) and Ladha
(1992), and Berend and Paroush (1998) established precise necessary and sufficient conditions for the jury
theorem to hold, by which, in all cases, the pi are known constants. Some of our basic results could be
presented as variants of Condorcet’s jury theorem except that, in our setting, voter accuracies are independent
and identically distributed (i.i.d.) random variables rather than a deterministic sequence as in the literature.
However, because the number of voters can be controlled in a crowdvoting application (as opposed to a
political election), our focus is instead on studying the transient behavior of voting rules for finite n, pro-
viding simple formulae that can help manage a crowdvoting system. In addition, we also consider voting rules
under which the number of voters is not specified in advance and is determined dynamically as voters arrive
to the system.

There is a substantial literature studying group decision making in economics, and here we cite the ref-
erences most relevant to our paper. Sah and Stiglitz (1986) study hierarchies and polyarchies, and Sah and
Stiglitz (1988) primarily analyze committees in the context of selecting projects that result in positive or
negative profits (i.e., good or bad projects). In particular, Sah and Stiglitz (1988) derive optimal committee
sizes and consensus levels to maximize expected profit. Ben-Yashar and Nitzan (1997) study a similar problem
and derive optimal voting weights, again to maximize expected profit. Our basic model is different than these
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papers in that we have no similar notion of a project and project cash flows because the crowd is voting on an
assessment, which does not have an immediate profit or loss. Instead, our basic model is to make the most cost-
effective use of expensive (infallible) employee voters and costless volunteer voters, whose capacity for voting
is limited; these two classes of voters, with different costs, have not been studied in the literature to the best of
our knowledge, and this is a unique characteristic of crowdvoting. Therefore, our paper complements this
literature stream. Furthermore, the voters’ accuracies in our paper are random variables, whereas, in these
papers, the corresponding accuracies are known constants. In another stream of economic work, group
decision making is analyzed via game theory. Feddersen and Pesendorfer (1997) analyze a game in which each
voter has a known utility function and characterize the Nash equilibrium under various preferences and
informational environments. Feddersen and Pesendorfer (1998) similarly characterize the Nash equilibrium of
a jury, demonstrating that, if voters act strategically, requiring unanimity in the votes is inferior to simple
majority voting in the sense that the probability of convicting an innocent person (or acquitting a guilty
person) is higher; Ladha et al. (1996) find empirical support for strategic votes in a jury. A game theoretic
formulation is not applicable to our context because voters in a crowdvoting system do not interact in contrast
to political (jury) voters who usually (must) interact. Furthermore, the details of the crowdvoting mechanisms
are typically hidden from voters, which minimizes any motivation for system gaming and strategic actions.
For further references, Gerling et al. (2005) and Li and Suen (2009) are related surveys.

We next summarize the related crowdsourcing literature. Small, quick jobs ill-suited for a computer (e.g.,
identifying the subject of a photograph) are usually called human intelligence tasks (HITs), and Amazon’s
Mechanical Turk system (mturk.com) is perhaps the best-known platform for crowdsourcing HITs. A study of
the Mechanical Turk system, closely related to our paper, is Amir et al. (2013), which analyzes the probability
of correct crowd assessment; these authors show, via human experiments, that the crowd has a higher
probability of correct crowd assessment for NP-complete problems (hard to solve, easy to verify) than
PSPACE-complete (hard to solve, hard to verify) problems. We, alternatively, take an analytical approach that
complements this experimental approach. Acemoglu et al. (2019) formulate and analyze a dynamic pro-
gramming model for resource allocation in a crowd with unobservable skills for an HIT context. Karger et al.
(2014) utilize a similar model to ours in the context of a crowdsourcing system for HITs, in which they also
model an unobservable truth, and workers’ reliabilities are random variables. These authors study the problem
of minimizing the cost of utilizing workers to achieve a target overall reliability, and they design an algorithm
for assigning tasks to workers; in contrast, in our paper, the crowd members are volunteers and are not paid
financially; furthermore, our solutions are closed form (not algorithmic), which results in increased in-
terpretability and ease of implementation. Liu et al. (2014) perform a field experiment on Taskcn (taskcn.com),
an online Chinese labor market similar to Amazon’s Mechanical Turk system, and study the effect of reward
levels and existing submissions (which are visible to all by default). The theoretical foundation of this paper
consists of a model that has some similarities to our own: users’ abilities are modeled as random variables on
the interval [0, 1] (which is also similar to Karger et al. (2014)). Again, our analytical results complement the
experimental emphasis of this paper. The main difference between this stream of work on HITs and our paper
is that, in an HIT application, the crowd members are paid for their work, whereas the crowdvoting ap-
plication studied in our paper is based on volunteer voters, which results in a fundamentally different model.
Furthermore, in HIT applications, the crowd workforce is transient, whereas, in our crowdvoting applications,
the crowd is stable as it typically consists of an online customer base (e.g., Xbox Live). Massoulié and Xu
(2018) study a problem that is similar and more general to ours, in that agents of multiple types are tasked
with evaluating content and provide noisy assessments, and the authors develop an algorithmic solution that
is asymptotically optimal; although their model is general, their algorithmic solution is not transparent or
interpretable (e.g., an optimization model must be solved numerically in a subroutine), resulting in a black-
box solution. In contrast, our analysis is finite (i.e., not asymptotic) and our results are closed form, in-
terpretable, and easily implementable, which results in a solution that is arguably more likely to be adopted
in practice.

Budescu and Chen (2015) study the wisdom of the crowd and design an algorithm to identify the poorly
performing individuals who are excluded from the crowd; we similarly identify a simple modification that
allows us to neutralize the weakest voters (but this is not a major consideration in our paper). Papanastasiou
et al. (2018) study a platform’s information control policy to influence the crowd to take consumer-surplus
optimal actions; our basic problem is different in that our fundamental decision is not to control information
but rather to decide what size crowd is needed per assessment. Marinesi and Girotra (2013) formally study
customer voting systems in the context of product development and pricing; they show that when customers
vote on product development, firm and customer interests are aligned, whereas, when customers vote on
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product pricing, the voting systems are ineffective because of misaligned objectives. Similarly, Caldentey and
Araman (2013) study the use of crowdvoting to determine the timing of new product introductions.

1.3. Our Contributions
In this paper, we present analytical models of crowdvoting in self-policing online communities, motivated by
recent innovative applications in the video game industry, in which members of the service, not employees,
evaluate complaints. Our overarching aim is to introduce parsimonious models that result in simple and
interpretable crowdvoting rules to efficiently utilize the crowd that are easy to implement so that the
likelihood of adoption in practice is high. Our results can potentially be applied to similar self-policing
applications at Facebook, Twitter, and other social media platforms; detection of fake news on these platforms;
identifying products that have high potential for success; identifying popular topics on news aggregators or
question–answer websites; and academic peer review.

Although many voting models exist in the literature, our approach is unique for two reasons. First, our
models are not driven by project selection with stochastic cash flows, a common objective in the (economics)
literature; rather, in a crowdvoting system, voters evaluate an assessment that has no immediate cash flows
associated with it. However, our research is motivated by maximizing firm value, which we argue leads to a
model of using the costless volunteer voters most effectively, resulting in the cost minimization of expensive
firm experts. Second, we model voter accuracies as random variables rather than known constants, a modeling
choice motivated by the random selection of voters from a large crowd; this modeling aspect is common in the
crowdsourcing literature but rare in other voting literatures.

Our paper is also fundamentally different than much of the crowdsourcing literature, especially that on
HITs, with which the crowd participants are paid a wage and constitute a transient workforce; instead, our
crowdvoting framework models volunteer voters who are not paid and exploits the stable nature of the online
community to learn and utilize the heterogenous abilities of the different members. Furthermore, we optimize
over classes of voting mechanisms that are simple, interpretable, and implementable (rather than algorithmic),
which increases the chance of adoption in practice and value creation for a firm.

The underlying premise of our paper is the objective of maximizing firm value. We argue that, using the
unique characteristics of crowdvoting, minimizing the number of volunteer crowd voters per assessment,
subject to service-level constraints, effectively minimizes the cost of policing the online community, thus
maximizing firm value. To solve this minimization problem, we analyze the probability that a randomly
selected subset of n voters from the crowd correctly determines the unobservable truth for a given assessment,
for a variety of static and dynamic voting mechanisms that are both interpretable and implementable. Re-
garding the static rules, we obtain closed-form expressions for this probability, for simple majority-rule voting
as well as a variant in which more accurate voters get a more heavily weighted vote under independent voters.
The introduction of correlated voters complicates the analysis, which we resolve using numerical experiments;
we find that correlated voters are detrimental to system performance, which is due to diminished crowd
diversity, a characteristic that the literature has shown is beneficial for crowdsourcing applications (e.g., see
Terwiesch and Xu 2008). We also allow the number of voters to be determined dynamically as voters arrive to
the system rather than in an a priori fashion. In majority-rule voting, we utilize random walks, and in
accuracy-weighted voting, we utilize sequential hypothesis testing. We obtain closed-form expressions for the
probability that the crowd correctly determines the unobservable truth as well as the expected number of
voters under independent voters.

In general, the accuracy-weighted rules outperform the simpler majority rules. However, these strong
performances come at a price: even when voter correlation is not present, both accuracy-weighted rules can be
difficult to implement in practice because of more intensive parameter estimation requirements. This
performance-implementation trade-off provides a rationale for the adoption of the simpler majority-voting
rules in practice. This trade-off is discussed in depth in our paper.

The final part of our paper considers the stream of assessments that arise in a practical application of
crowdvoting. Building on the idea that a single user will likely vote on a few, but not many, assessments in a
short period of time, we consider the matching of the supply of voters with the demand for assessments.
Introducing the rate at which a population generates complaints, we show that there is an intrinsic limit to the
crowd’s ability to assess content if the complaint rate is too high; stated differently, we are able to characterize
the limits of a costless assessment system that depends solely on the crowd. The managerial implication is that
the crowd might need to be complemented by firm employees to attain target service levels.

All proofs are presented in Appendix A.
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2. The Firm’s Problem
A key concept of our paper is crowdvoting, which we define as the set of activities in which a firm uses a
collection of volunteer persons, not employed by the firm, to evaluate content that has an objective value. We
assume the following:

Assumption 1. A firm has a limited pool of costly experts that can perfectly evaluate content.

Assumption 2. The firm has an associated online community (crowd) that is a large though not unlimited resource of nonfirm
persons that imperfectly evaluate content.

We begin with the premise that the firm is interested in maximizing its value. A potential source of value
reduction is misbehaving users that violate the ToS, which reduces the attraction of the community to other
users and could lead to customer attrition and lower firm revenues. Therefore, firms have traditionally used
internal or external employees to perform policing functions to preserve the quality of the online community
(i.e., adherence to the ToS). However, a potential source of cost savings is to replace some or all of the costly
employees with members of the online community who are willing to assess complaints without financial
compensation. In our paper, we focus on the cost-minimization perspective of the firm. Conceptually, we
consider the problem

min (Crowd Assessment Cost) + (Employee Assessment Cost)
s.t. Service Constraints. (1)

The service constraints contain three constraints. The first is to ensure that the decision reached by management
is correct with high probability; for the employee assessors, this is assumed to be one per Assumption 1;
for the crowd assessments, we devote a large portion of this paper to calculating the probability of correct
crowd assessment (PCCA) for various voting mechanisms, which is bounded from below in problem (1). The
other two constraints bounded from above are the probability of type I and II errors; again, these probabilities
are zero for the employee assessors, and for the crowd, they follow from the PCCA calculations. Therefore, the
service constraints exclusively pertain to the crowd assessments.

The objective consists of two components, the first of which is the crowd assessment cost. Note that the
crowdvoting examples mentioned in the introduction depend on volunteer voters, who are not compensated
financially. In other words, the crowd assessment cost is zero. The second cost, employee assessment cost, can
be derived from the wage rate of the employees; however, this specific calculation is not needed because we
simply need to assign as many assessments to the costless crowd as possible while still satisfying the
constraints, and any remaining assessments get assigned to the employees.

Although large, the online communities are not unlimited, and it is not always possible to assign all
assessments to the crowd while satisfying the service constraints. This is due to voter participation or lack
thereof, which we next discuss.

2.1. Voter Participation
The crowdvoting examples mentioned in the introduction depend on volunteer voters, who are not com-
pensated financially. Although a single voter could potentially participate even without financial compen-
sation, the voter’s participation is clearly not unlimited. To capture this intuitive effect, we adopt and modify
the Downs (1957) model of voter participation as presented by Riker and Ordeshook (1968). This model states
that a single voter’s net return r from voting can be written as r # pb + d − c, where p is the probability that the
vote is decisive, b is the voter benefit when the vote is decisive, d is the positive benefit of voting not associated
with the outcome, and c is the positive cost of voting not associated with the outcome; the voter votes if and
only if r > 0. In our crowdvoting context, we propose that a single voter’s return ri on a single assessment i is

ri # ui − ci,

where ui # pibi + di is the overall utility of voting on assessment i, bi ≥ 0 measures the value of influencing the
outcome of an assessment, pi ≥ 0 is the probability that the vote is decisive in the assessment, di ≥ 0 measures
voter satisfaction, and ci > 0 is the time commitment required to make the assessment. Because knowing
whether a vote is decisive or not is typically unobservable, we focus on discussing the voter satisfaction di.
Consider open source software, for which software development is primarily accomplished by volunteers who
receive only nonfinancial compensation, such as pride; di can capture this pride. Microsoft’s Xbox Live service
has an “Ambassadors” program (https://ambassadors.xbox.com), by which volunteers assist gamers and are
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only compensated in “levels and loot,” which are rewards redeemable only within the Xbox Live ecosystem; di
can capture a user’s valuation of these nonfinancial offerings. Anderson et al. (2013) analyze the incentives that
result from nonfinancial badges, which are awarded to users for various achievements and appear on a
number of websites to increase user participation (e.g., Huffington Post, Khan Academy, and Wikipedia); they
show that these badges can be powerful incentives that increase user participation; di can capture the value of
these badges.

In practice, a single voter is prompted to perform many assessments sequentially but can stop at any time.
For example, when a gamer logs into the Xbox Live service, there is a prompt asking the gamer to perform a
number of assessments; the prompt is a request, and the gamer has no obligation to do the assessments. It is
reasonable to assume that ci # c for all i; as discussed, this cost is typically the time needed to perform each
assessment, which is usually one minute in the Enforcement United case. We also assume that ui is decreasing
in i, where i indexes the ith assessment provided to a gamer, to reflect the fact that a gamer generally loses
interest as the gamer performs more assessments in a row. If a voter decides to perform m assessments and
then quits to play video games, the voter’s cumulative return is ∑m

i#1 ri #
∑m

i#1(ui − c). The number of assess-
ments m is chosen to maximize the voter’s cumulative return, maxm

∑m
i#1 ui − cm, which clearly has a unique

maximum m∗ whenever ui strictly decreases to zero in i. This model reflects the reality that a voter is likely to
perform, say, five assessments in a row taking five minutes, but is unlikely to perform 100 assessments in a row.

This discussion provides evidence that crowd votes are a limited resource that the firm must utilize ef-
ficiently. One way to do so is to minimize the number of voters per assessment, which maximizes the number
of assessments assigned to the costless crowd. Equivalently, this minimizes the number of assessments
assigned to the costly firm employees, thus minimizing firm cost. Consequently, we indirectly solve problem (1)
by solving the following constrained mathematical programming model:

min Number of Voters per Assessment
s.t. Probability of Correct Crowd Assessment ≥ γ

Probability of Type I Error ≤ ε

Probability of Type II Error ≤ ε, (2)

where γ, ε, and ε are user-supplied probabilistic thresholds that capture service-level constraints. In particular,
our objective is to optimize over simple, interpretable, and easily implementable classes of voting mechanisms
(described in Section 3.2); the focus on easy to understand and implement voting mechanisms effectively
maximizes the likelihood of adoption in practice and value creation for firms. Problem (2) becomes our
canonical model, which we solve for various interpretable voting mechanisms in subsequent sections, in which
full details of the optimization models appear.

3. Crowdvoting Models
An important primitive of our model is an assessment, such as whether a user has violated the ToS of an
online community. A user’s complaint typically generates the need for an assessment (e.g., a participant
notices that another participant’s username is offensive). Management is then responsible for assessing the
complaint and determining whether further action is necessary (e.g., removing the participant from the
community). Historically, management used employees (firm experts) to assess the complaints, but recently
firms have been utilizing crowdvoting to outsource the process to the crowd.

We primarily consider binary assessments and let T denote the truth underlying a given assessment, where
T ∈ {−1, 1}; in Section 7, we discuss assessments with more than two outcomes. If T # 1, we associate a positive
connotation (e.g., a user has not violated ToS), and for T # −1, we associate the complementary, negative
connotation (e.g., a user has violated ToS). As discussed in the previous section, our assumptions imply that
the firm, using employee experts, has the ability to ascertain the value of T with certainty. However, the firm
might not have a sufficient number of experts to evaluate all complaints internally; recall that the Xbox Live
community has at least 48 million users, and every member is a potential complaint generator. Alternatively,
the firm simply might not want to assess all complaints internally because of cost considerations, which
further motivates problem (1). Therefore, the firm outsources some or all of the assessments to a crowd of
imperfect voters who are members of the firm’s associated online user community, and any remaining as-
sessments are evaluated by internal firm experts.
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3.1. Stochastic Accuracies for Crowd Voters
If a given assessment is assigned to the crowd, we assume that n voters are selected randomly from the crowd
to vote on the assessment; we further assume that n is much smaller than the size of the crowd. There is
typically heterogeneity in voters’ abilities to ascertain the underlying truth, which reflects differing voter skill,
bias, and even ignorance. We let voter i’s vote vi ∈ {−1, 1} for i # 1, . . . ,n and let pi ∈ [0, 1] denote the accuracy
of voter i in identifying T # 1; mathematically, P(vi # 1|T # 1) # pi. Similarly, we let qi ∈ [0, 1] denote the
accuracy of voter i in identifying T # −1; mathematically, P(vi # −1|T # −1) # qi.

The pi and qi accuracies might or might not be observable (i.e., estimated with a reasonable degree of
precision). If voters participate frequently, the system can estimate the pi and qi values for voter i using
historical data. For example, k historical assessments indexed by j # 1, . . . , k with known values of Tj # 1
(determined by firm experts), can be given to voter i, and an estimate for pi can be determined by how many
times voter i agrees with the known underlying truth; mathematically, the estimate p̂i # ∑k

j#1 1{vj # 1}/k can be
used as a proxy for pi, where 1{} is the indicator function. Of course, there is estimation error. Standard
statistical theory, under mild conditions, prescribes

[
p̂i − z

̅̅̅̅̅̅̅̅
p̂i(1−p̂i)

k

√
, p̂i + z

̅̅̅̅̅̅̅̅
p̂i(1−p̂i)

k

√ ]
as a (1 − α)% confidence in-

terval for pi, where z is the (1 − α/2) percentile of a standard normal distribution. Although we could increase k
to have a more precise estimate of pi, this is taxing on a single voter; for instance, if we desire the estimate p̂i to
be within, say, 1% of the true value pi with, say, 99% confidence, then, noting that p̂i(1 − p̂i) ≤ 1

4, the confidence
interval can be manipulated to show that k ≥ (Φ−1(0.995))2

4(0.01)2 ≈ 16, 587 (training) assessments are needed. Alter-
natively, we suggest to instead tax the crowd by choosing a relatively small value of k and letting the lower
limit of the confidence interval, p̂i − z

̅̅̅̅̅̅̅̅
p̂i(1−p̂i)

k

√
, be the proxy for pi. For example, if k # 100, z # Φ−1(0.995) # 2.576,

and, say, p̂i # 0.80, the lower bound equals p̂i − z
̅̅̅̅̅̅̅̅
p̂i(1−p̂i)

k

√
# 0.70. In this way, the voter’s accuracy is under-

estimated, and more voters are needed for every assessment. However, each voter would be available to start
contributing to nontraining crowdvoting much sooner, providing a larger voting population to draw from,
which effectively neutralizes the need for more voters per assessment.

In the sequel, for analytical convenience, we assume that the pi and qi values are known for all (partici-
pating) members of the crowd though we also provide voting mechanisms that do not require these values in
case it is burdensome to estimate them. However, for a given assessment, because a random sample of n voters
is selected from the crowd, a priori the values of (pi, qi), i # 1, . . . ,n, for the assessment are not known. We,
therefore, introduce distributions for pi and qi to reflect this random selection of a subset of voters from the
crowd for a given assessment:

Assumption 3. The voter accuracies pi and qi, i # 1, . . . ,n, for a given assessment, are random variables:
• Voter accuracies pi in identifying T # 1 are draws from a continuous probability distribution fp with support on

[0, 1] with mean µp, standard deviation σp, and pairwise correlation coefficient rp.
• Voter accuracies qi in identifying T # −1 are draws from a continuous probability distribution fq with support on

[0, 1] with mean µq, standard deviation σq, and pairwise correlation coefficient rq.
Assuming the crowd has size N, the crowd data, (pi, qi), i # 1, . . . ,N, can be used to determine an empirical

estimation of the distributions fp and fq as well as estimate the statistics µp, µq, σp, σq, rp, and rq. Alternatively,
the crowd data can be used to fit a well-known distribution; in our opinion, a good choice is the beta
distribution, a common conjugate prior in Bayesian statistics for a probability parameter. In addition, our
subsequent results are robust with respect to the support of these distributions. For example, if we only utilize
voters whose accuracies pi are contained in the interval [a, b] ⊂ [0, 1], then the conditional distribution
fp(t)/

∫ b
a fp(τ)dτ, t ∈ [a, b], can be used in place of fp in all our results. If historical assessments are not available

to determine the crowd data (pi, qi), i # 1, . . . ,N, then a uniform distribution, potentially with support
[a, b] ⊂ [0, 1], can be used for fp and fq; this is an appealing option because the uniform distribution is entropy
maximizing. Although our core results assume that the distributions are static, in Section 7.1, we discuss the
potential for voter learning (i.e., improving accuracies over time and changing distributions). Finally, as
mentioned, we also provide voting mechanisms that require minimum information about the accuracy
distributions in case it is burdensome to estimate them in practice.

Similarly, we assume that there is a prior distribution for the underlying truth.

Assumption 4. The underlying truth T is a Rademacher random variable with parameter ':

P(T # 1) # ' and P(T # −1) # 1 − '.

Wagner: Crowdvoting Judgment: An Analysis of Modern Peer Review
200 Stochastic Systems, 2020, vol. 10, no. 3, pp. 193–222, © 2020 The Author(s)



As discussed, the parameter ' can also be determined by looking at the history of past assessments. This
assumption allows us to introduce the unconditional accuracy of voter i:

Definition 1. Voter i’s unconditional accuracy is defined as ρi, which is modeled as a mixture of the pi and qi ran-
dom variables:

ρi #
pi, with probability '

qi, with probability 1 − '.

{
(3)

Note that, although correlation between pi and qi might (and probably does) exist, it is not relevant for our
analysis; for a given assessment, the underlying truth has a specific value (say, T # 1) and only one conditional
accuracy is relevant (e.g., pi for T # 1). In other words, the random variables pi and qi are never combined and
used concurrently in a given assessment. Furthermore, note that the distribution of ρi can be readily calculated
from the distributions fp and fq: fρ # ' fp + (1 − ') fq. However, the correlation between pi and pj (or qi and qj),
i +# j, equals rp (rq) and factors into our analysis when it exists.

3.2. Voting Rules
The vector v # (v1, . . . , vn) represents all vote values. We propose the following decision rule for the
crowdvoting system:

R(v) #

1,
∑n

i#1
wivi ≥ mp

−1,
∑n

i#1
wivi ≤ −mq

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where w1, . . . ,wn are nonnegative weights. If R(v) # 1, the system concludes that T # 1; if R(v) # −1, the system
concludes that T # −1; and if R(v) # 0, the crowd is inconclusive and the system uses a (costly) firm expert to
make the assessment. The parameters mp and mq allow a decision maker to select consensus levels. We only
assume that −mq ≤ mp but otherwise make no assumptions on the sign of these parameters; we do, however,
subsequently make recommendations on how to set mp and mq.

We consider two sets of weights in this paper: (a) unit weights wi # 1,∀i and (b) accuracy weights wi # ρi,∀i,
for which a more accurate voter casts a more heavily weighted vote. When unit weights are applied, our
decision rule is the standard majority voting rule. When accuracy weights are utilized, our rule is analogous to
the methodology of Nate Silver’s website FiveThirtyEight.com (a polling aggregator), which weights each
pollster by accuracy in its aggregation; see Felder (2009) for further details of the weighting methodology. This
website correctly predicted the winner of all 50 states and the District of Columbia in the 2012 presidential
election (Salant and Curtis 2012). Note that, once voter i is selected for an assessment, pi and qi are known. The
weight ρi, in contrast, is a random weight, according to Equation (3), which is easily implemented in practice
with a known value of '.

The literature also identifies the log-odds weights wi # log(ρi/(1 − ρi)), which maximize the probability that
the crowd makes the correct assessment for a given n; see Grofman et al. (1983) for a proof when the ρi are
deterministic. Unfortunately, we were unable to obtain our closed-form solutions for these weights. However,
we demonstrate in Monte Carlo simulation studies that the suboptimality of our simpler accuracy weights
(wi # ρi) is minimal (less than 1% loss on average); these results appear in Appendix B.

Before discussing our analysis and main results, we present notation for the reader’s convenience in Table 1.

4. Majority-Rule Crowdvoting
In this section, we consider the simplest decision rule, which sets wi # 1 for all i, giving

Ru(v) #

1,
∑n

i#1
vi ≥ mp

−1,
∑n

i#1
vi ≤ −mq

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)
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where the u subscript refers to the unit weights; in other words, we are considering “majority-rule crowdvoting.”
The consensus parameters mp and mq can be used to capture proportional supermajorities. For example, if the
system requires at least a fraction κ ∈ (0, 1) of the n voters to vote v # 1 in order for the system to conclude
that T # 1, the rule needs ∑n

i#1 vi ≥ κn − (1 − κ)n to conclude T # 1, and we can set mp # (2κ − 1)n.
The probability that the crowd correctly determines the underlying truth of a given assessment,

P R(v) # T( ), (6)

is of critical importance in a crowdvoting system and is the primary service metric that this paper analyzes.
We call this the PCCA. We consider two approaches for implementing the majority-rule crowdvoting rule in
Equation (5), resulting in two expressions for the PCCA. In the first, we present a static analysis, in which the
number of voters n is determined in advance of the random sampling of n voters. This analysis is analogous to
sample size determination in statistical experiment design. We then consider a dynamic variant, using random
walks, with which the number of voters n is not determined in advance. A main contribution of the results in
this section (and the next section) is the derivation of closed-form expressions for the PCCA, which allow a
manager to more easily understand the crowdvoting strategies, select among them, and more readily im-
plement them. We then provide detailed analyses, based on the optimization of problem (2), to guide a user in
appropriately setting the consensus parameters mp and mq for both approaches.

4.1. A Priori Determination of Number of Voters n
In this section, we assume that the number of voters n is fixed in advance of an assessment’s evaluation by the
crowd. Our first result is the following proposition.

Proposition 1. If the pi and qi are i.i.d., the PCCA is

P Ru(v) # T( ) # ' 1 − Fµp

n +mp

2

⌈ ⌉
− 1

( )( )
+ 1 − '
( )

1 − Fµq

n +mq

2

⌈ ⌉
− 1

( )( )
,

where Fµ is the cumulative distribution function of a binomial random variable with n trials and probability of success
µ ∈ [0, 1].

Note that only the means µp and µq of the distributions fp and fq, respectively, are needed to evaluate the
PCCA, which facilitates the implementation of this simple decision rule in practice. For example, the Matlab
functions binocdf and ceil suffice as well as the Microsoft Excel functions binom.dist and roundup. In
Appendix C, we demonstrate some counterintuitive nonmonotonicity results that occur if µp < 0.5 or µq < 0.5.
Conveniently, this unsatisfactory behavior of the PCCA associated with µp < 0.5 or µq < 0.5 can be rather
easily rectified. For instance, for any voter i who has pi < 0.5, the system can invert the vote and improve the
voter’s accuracy; for this voter, the new vote v′i is defined as v′i # −vi, which results in a modified accuracy
p′i # max{pi, 1 − pi} ≥ 0.5. In this way, we can guarantee µp > 0.5 and µq > 0.5, and the system can obtain the
desirable behavior that the PCCA is monotonically increasing in (odd) n. The distributions fp and fq aree
updated as well to have a domain [a, b] ⊆ [0.5, 1], which does not affect our subsequent analysis (as discussed
in Section 3.1). In practice, managers should make the effort to apply this modification to any voters that
(perhaps intentionally) perform worse than a fair coin flip. We also provide alternative techniques, based on
type I and II errors, to avoid these undesired behaviors by appropriately setting the consensus parameters mp
and mq; we discuss this approach, and its limitations, in the next section.

Table 1. Notation

n Number of voters for an assessment
T ∈ {−1, 1} Underlying truth of an assessment
' Probability that T # 1: P(T # 1)
vi ∈ {−1, 1} Voter i’s vote
pi Voter i’s conditional accuracy in determining T # 1: P(vi # 1|T # 1)
qi Voter i’s conditional accuracy in determining T # −1: P(vi # −1|T # −1)
ρi Voter i’s unconditional accuracy in determining T: P(vi # T)
wi ∈ 1, ρi

{ }
Voter i’s weight in the voting aggregation

mp Consensus parameter for concluding T # 1
mq Consensus parameter for concluding T # −1
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Example 1. Proposition 1 has some interesting implications for academic peer review. For instance, if there
are n # 2 reviewers and µp # µq # 0.90 (which we feel could be common in academic peer review), then
P(Ru(v) # T) # 0.81, which does not instill much confidence in the peer-review process. Furthermore, a single
reviewer can attain P(Ru(v) # T) # 0.90, so the second reviewer is actually detrimental. The intuition for this
counterintuitive result is that there is a possibility of deadlock, inwhich one reviewer votes for and the other against
a submitted paper, which destroys the value of their accuracies. To conclude these thoughts, we observe that a third
reviewer gives P(Ru(v) # T) # 0.972, which is much more satisfying.

We next consider correlated voters. We were unable to find closed-from expressions, as in Proposition 1, for
the case of nonzero correlations rp and rq; we, therefore, study this case numerically. We assume that the
accuracy distributions fp and fq are uniformly distributed on [0.5, 1.0], a distributional assumption that results
in the clearest differentiation between correlation values. For a given value of n, we generate correlated ac-
curacies using the Gaussian copula method (Nelsen 2007) for rp # rq ∈ {0.00, 0.50, 0.99},1 and the PCCA is
evaluated using Monte Carlo simulation with 10,000 trials. Setting mp # mq # 1, in Figure 2 we observe that the
PCCA decreases as the common correlation coefficient is increased (we only plot odd n to avoid the local
minima at even n because of ties). Intuitively, this can be interpreted as a lack of diversity in the crowd, which
has been identified as a key factor in crowdsourcing (e.g., see Terwiesch and Xu 2008). Although not apparent
in Figure 2, the PCCA converges to unity for each correlation coefficient; however, the convergence is clearly
slower as the correlation coefficient increases.

4.1.1. Type I and II Error Probabilities. We next apply the idea of type I and II errors to our crowdvoting context
so that we may control the probabilities of these errors. This analysis provides us a means to appropriately
determine the consensus parameters mp and mq. We define a null hypothesis as an assessment that is not
offensive: T # 1. The probabilities of type I and II errors, for i.i.d. accuracies, are characterized in the following
proposition.

Proposition 2. If the pi and qi are i.i.d., the probability of a type I error is

P Ru(v) # −1|T # 1( ) # Fµp

n −mq

2

⌊ ⌋( )
,

and the probability of a type II error is

P Ru(v) # 1|T # −1( ) # Fµq

n −mp

2

⌊ ⌋( )
,

where Fµ is the cumulative distribution function of a binomial random variable with n trials and probability of success
µ ∈ [0, 1].

Suppose that we require the probability of a type I error to be at most ε ∈ (0, 0.5), the probability of a type II
error to be at most ε ∈ (0, 0.5), and a PCCA of at least γ ∈ (0.5, 1). Note that Proposition 2 can be used to
determine the values of mp and mq as a function of n to obtain these target error probabilities. In particular, if

Figure 2. The PCCAs for Various Correlation Coefficients
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k∗n # max{k ∈ Z|Fµp(k) ≤ ε}, then we set mq # n − 2k∗n. Similarly, if *∗n # max{* ∈ Z|Fµq(*) ≤ ε}, then we set mp #
n − 2*∗n. We can then plug these consensus parameters into the PCCA expression from Proposition 1, obtaining
P(Ru(v) # T) # '(1 − Fµp(n − *∗n − 1)) + (1 − ')(1 − Fµq(n − k∗n − 1)), which is increasing in n. We formalize these
ideas in the following corollary.

Corollary 1. If mq # n − 2k∗n and mp # n − 2*∗n, where k
∗
n # max{k ∈ Z|Fµp(k) ≤ ε} and *∗n # max{* ∈ Z|Fµq(*) ≤ ε}, then

P(Ru(v) # −1|T # 1) ≤ ε, P(Ru(v) # 1|T # −1) ≤ ε,

and

P Ru(v) # T( ) # ' 1 − Fµp n − *∗n − 1
( )( )

+ 1 − '
( )

1 − Fµq n − k∗n − 1
( )( )

. (7)

Therefore, we can (numerically) find the minimum number of voters needed to obtain a target PCCA ≥ γ
while satisfying constraints on the probabilities of type I and II errors. In other words, we solve the following
problem, which is a detailed version of problem (2):

min
n,mp,mq

n

s.t. P Ru(v) # T( ) ≥ γ

P Ru(v) # −1|T # 1( ) ≤ ε

P Ru(v) # 1|T # −1( ) ≤ ε. (8)

Example 2. We demonstrate the procedure to solve this optimization problem using the parameter values ε # 0.01,
ε # 0.01, γ # 0.98, and (µp, µq) # (0.8, 0.6): we obtain (n,mp,mq) # (28, 8,−4). Note that negative consensus pa-
rameters (e.g., mq < 0) are needed because of the relatively lower average accuracy µq in determining T # −1 as
compared with µp in determining T # 1. Mathematically,

Ru(v) #
1,

∑28

i#1
vi ≥ 8

−1,
∑28

i#1
vi ≤ 4

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

and the rule concludes that T # −1 even if ∑28
i#1 vi ∈ {0, 1, 2, 3, 4}! This rule gives P(Ru(v) # T) # 0.9818, P(Ru(v) #

−1|T # 1) # 0.005, P(Ru(v) # 1|T # −1) # 0.0081. In contrast, if n # 28 and (mp,mq) # (1, 1), then P(Ru(v) #
T) # 0.9064, P(Ru(v) # −1|T # 1) ≈ 0, and P(Ru(v) # 1|T # −1) # 0.1015; even if n # 75 and (mp,mq) # (1, 1), then
P(Ru(v) # T) # 0.9802, P(Ru(v) # −1|T # 1) ≈ 0, but P(Ru(v) # 1|T # −1) # 0.0396.

We next consider correlated voters. Here, we introduce asymmetry by letting fp be uniformly distributed on
[0.75, 1.0] and fq be uniformly distributed on [0.5, 1.0]; we obtained qualitatively similar results with other
distributional assumptions. We solve problem (8) numerically: we consider a grid in (mp,mq) space, and for
each feasible tuple (satisfying the second and third bounds in (8)), we find the minimum value of n that
satisfies the first bound in (8); finally, we find the smallest feasible n over all feasible (mp,mq) tuples. To
evaluate feasibility, we again utilize the Gaussian copula method to generate correlated accuracies and Monte
Carlo simulation to evaluate the constraint probabilities in problem (8). Table 2 reports on the optimal values
of n, mp, and mq for ε # ε # 0.01, γ # 0.98, rp # rq ∈ {0.00, 0.50, 0.99}, and ' # 0.5.

From Table 2, we again see that the asymmetry in distributions leads to a negative consensus parameter
mq < 0 at optimality, which is due to the relative crowd strength in identifying T # 1 over T # −1. Furthermore,
the optimal (n,mp,mq) values preserve the property that stronger correlations weaken the crowd’s ability to

Table 2. Optimal Solutions to Problem (8) for ε # ε # 0.01 and γ # 0.98 and
rp # rq ∈ {0.00, 0.50, 0.99}
(
µp, µq

)
rp # rq # 0.0 rp # rq # 0.5 rp # rq # 0.99

n 11 17 23
mp 2 4 6
mq −2 −4 −3
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correctly judge an assessment, thus leading to a higher number of voters per assessment for target values of
PCCA and error probabilities.

4.2. Dynamic Determination of Number of Voters n via Random Walks
In this section, we assume that the number of voters n is not set in advance of an assessment’s evaluation by
the crowd. In other words, voters are added to an assessment until consensus is reached. We propose that two
simple biased random walks can collectively serve as a dynamic implementation of the unit-weighted
crowdvoting rule in Equation (5). To explain this link, note that the proof of Proposition 1 shows that,
conditional on T # 1, voter i’s vote vi is a Rademacher random variable with parameter µp: P(vi # 1) # µp and
P(vi # −1) # 1 − µp. Similarly, conditional on T # −1, we have P(vi # 1) # 1 − µq and P(vi # −1) # µq. The
aggregation of the first k votes in Equation (5), ∑k

i#1 vi, returns the position of a simple random walk after k
steps, whose parameter depends on the value of T. In addition, assuming mp and mq are positive integers, we
may define the stopping time as the number of voters n:

n # min k ≥ 1 :
∑k

i#1
vi # mp or

∑k

i#1
vi # −mq

{ }
. (9)

Note that the application of a random walk effectively requires mp and mq to be positive (to avoid a trivial
stopping time of zero), which is not required in the static rule studied in the previous section. Thus, this new
rule suggests a trade-off between the benefit of dynamism and the restriction of consensus parameters, which
we explore in this section.

Standard probability theory (e.g., Steele 2000, chapter 1) states that P(n < ∞) # 1 under independent voters,
which implies that P(Ru(v) # 0) # 0. The PCCA under this dynamic implementation of Equation (5) is given in
the following proposition.

Proposition 3. If the pi and qi are i.i.d., the PCCA is

P Ru(v) # T( ) # '
1 − 1−µp

µp

( )mq

1 − 1−µp
µp

( )mp+mq

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + (1 − ')

1 − 1−µq
µq

( )mp

1 − 1−µq
µq

( )mp+mq

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Note that Proposition 3 does not depend on n, which varies across assessments. The expected number of voters
is characterized in the next proposition.

Proposition 4. If the pi and qi are i.i.d., the expected number of voters is

E[n] # '
mq

1 − 2µp
− mp +mq

1 − 2µp

( ) 1 − 1−µp
µp

( )mq

1 − 1−µp
µp

( )mp+mq

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ 1 − '
( ) mp

1 − 2µq
− mp +mq

1 − 2µq

( ) 1 − 1−µq
µq

( )mp

1 − 1−µq
µq

( )mp+mq

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Under this random walk model, we analyze the following variant of problem (2), in which we determine mp
and mq to minimize the expected number of voters, subject to a service-level constraint γ on the PCCA:

min
mp,mq

E[n]

s.t. P Ru(v) # T( ) ≥ γ

mp,mq ≥ 0; (10)

note that the type I and II errors are simply 1 − γ because, as we discussed, P(Ru(v) # 0) # 0.
We found the derivation of a closed-form solution to problem (10) intractable. Fortunately, a numerical

solution is straightforward to implement. In Figure 3, we display the contours of the feasible region on the left
panel and the contours of the objective function on the right panel; we selected the means (µp, µq) # (0.65, 0.51)
to demonstrate that the feasible region is not necessarily convex, which supports our numerical solution
procedure.
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We next compare the dynamic determination of n considered in this section with the predetermination of n
studied in the previous section under the assumption of independent voters. First, to attain any target PCCA
value of γ ∈ (0, 1), the random walk requires µp > 0.5 and µq > 0.5 because mp,mq > 0; fortunately, this is easily
achievable by inverting the votes of inaccurate voters as described in the previous section. Consequently, we
consider the values (µp, µq) # (0.8, 0.6) (the distributions are not needed). From Example 1, predetermination of
n resulted in n # 28 voters, mp # 8 and mq # −4. The solution of problem (10) for (µp, µq) # (0.8, 0.6) is mp # 9,
mq # 3, and the minimized E[n] # 54. Thus, on average, the random walk implementation requires almost
twice as many voters. Table 3 provides a more comprehensive comparison that shows predetermination of n,
in all cases, results in fewer voters, on average, than the dynamic determination of n. The difference in the
number of voters increases with |µp − µq|. The reason for this disadvantage is that the random walk
implementation requires the consensus parameters mp and mq to be positive, whereas the predetermination of
n does not; indeed, as mentioned, mq # −4 for the predetermination of n when (µp, µq) # (0.8, 0.6), which allows
the crowdvoting rule in Equation (5) to better accommodate differential accuracies; the random walk
implementation is limited in its ability to do so by the constraints mp,mq ≥ 0. Thus, although one might think
the dynamic implementation is more efficient than the static one, we recommend that managers use the static
predetermination of n because of the advantage of negative consensus parameters. Similar results were
obtained under correlated voters (i.e., predetermination is better) and are omitted for brevity.

4.3. A Hybrid Voting Mechanism
In this section, we provide a hybrid voting mechanism that combines the dynamic structure of the mechanism
analyzed in Section 4.2 with the more flexible consensus parameters of the static mechanism studied in
Section 4.1.

Beginning with target PCCA and type I and II error probabilities of (γ, ε, ε), the analysis in Section 4.1
prescribes the appropriate values of (ns,ms

p,m
s
q), where the s superscript refers to the static setting. However,

the same consensus conclusions can potentially be achieved with fewer voters in a dynamic setting even
with negative consensus parameters. For instance, if the first ns − l voters achieve a consensus of ms

p + l,
we readily conclude that the consensus of all ns voters must be at least ms

p; similarly, if the first ns − l
voters achieve a consensus of −ms

q − l, the consensus of all ns voters is at most −ms
q. We can exploit this

Figure 3. The PCCA (Left) and E[n] (Right) as a Function of mp and mq Under the Random Walk Model

Table 3. Minimum Number of Voters to Obtain P(R(v) # T) ≥ 0.98 for Various (µp, µq)

(µp, µq) (0.6, 0.6) (0.7, 0.6) (0.8, 0.6) (0.9, 0.6) (0.9, 0.7) (0.9, 0.8) (0.9, 0.9)

n (Section 4.1) 122 54 28 16 12 9 5
E[n] (Section 4.2) 146 74 54 40 18 11 7
E[n] (Section 4.3) 103 43 21 12 8 6 3
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observation in a dynamic setting: modifying Equation (9), a hybrid voting mechanism dynamically stops at n
voters, where

n # ns −max l ∈ 0, . . . ,ns − 1{ } :
∑ns−l

i#1
vi # ms

p + l or
∑ns−l

i#1
vi # −ms

q − l

{ }
,

where the last l votes are not needed. In Table 3, we report the expected number of voters of this hybrid
strategy; comparing these results with those of Sections 4.1 and 4.2, we see that this hybrid strategy exhibits
the strongest performance by combining dynamism and negative consensus parameters.

5. Accuracy-Weighted Crowdvoting
In this section, we analyze a decision rule in which a vote’s weight is equal to the voter’s accuracy. The
motivation is to give more accurate voters a stronger influence in determining the system’s assessment. Setting
wi # ρi, where ρi is given in Equation (3), the decision rule in this section is

Rρ(v) #

1,
∑n

i#1
ρivi ≥ mp

−1,
∑n

i#1
ρivi ≤ −mq

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where the ρ subscript indicates the accuracy weights wi # ρi. As discussed previously, the weight ρi is random
though easily implemented in practice with known values of pi, qi, and '.

We again consider two approaches, one static and the other dynamic, for implementing the accuracy-
weighted crowdvoting rule in Equation (11), resulting in different expressions for the PCCA. As in Section 4,
the first considers the predetermination of n, and the second allows n to be determined dynamically. We
provide analytical solutions under the assumption of independent voters, which we extend via numerical
studies for correlated voters.

5.1. A Priori Determination of Number of Voters n
Our first step in understanding this new decision rule is to analyze the random variable ρivi. Note that this
random variable is continuous, which implies that the probability of a tie vote is zero, so there is no need to
avoid an even number of voters (as in simple majority-rule voting). The next lemma characterizes the
conditional distributions of this random variable.

Lemma 1. The density of ρivi, conditional on T # 1, is

g(t) # t fp(t), t ∈ [0, 1]
(1 + t) fp(−t), t ∈ [−1, 0),

{

and the density, conditional on T # −1, is

h(t) # (1 − t) fq(t), t ∈ [0, 1]
−t fq(−t), t ∈ [−1, 0),

{

for i # 1, . . . ,n.
In theory, Lemma 1 suffices to evaluate the PCCA for given values of n, mp, and mq under independent

voters. The density ĝn of ∑n
i#1 ρivi, conditional on T # 1, can be determined by the n-fold convolution

(g∗g∗ · · · ∗g)(t), where g is the conditional density of ρivi from Lemma 1, and convolution is defined as
(g∗g)(t) #

∫ ∞
−∞ g(τ)g(t − τ)dτ. Similarly, the density ĥn of ∑n

i#1 ρivi, conditional on T # −1, can be determined
by the n-fold convolution of the density h from Lemma 1. The PCCA can then be evaluated as

P
(
Rρ(v) # T

) # 'P
(
Rρ(v) # 1|T # 1

) + 1 − '
( )

P Rρ(v) # −1|T # −1( )

# '
∫ n

mp

ĝn(τ)dτ + 1 − '
( ) ∫ −mq

−n
ĥn(τ)dτ. (12)

Wagner: Crowdvoting Judgment: An Analysis of Modern Peer Review
Stochastic Systems, 2020, vol. 10, no. 3, pp. 193–222, © 2020 The Author(s) 207



We can utilize numerical convolution to determine the conditional densities ĝn and ĥn for ∑n
i#1 ρivi and

numerical integration to evaluate P(Rρ(v) # T), which we illustrate in the following example.

Example 3. Again consider the context of academic peer reviewwith n # 2 reviewers and suppose that fp and fq are
both uniform distributions on [0.8, 1], where µp # µq # 0.9. From Example 1, the value of P(Ru(v) # T) # 0.81 and
the value of P(Rp(v) # T) # 0.93. Therefore, moving from a unit-weighted voting rule to an accuracy-weighted rule,
by incorporating reviewer skills (estimable from previous peer reviews), can substantially increase P(R(v) # T)
by 15%.

However, this numerical approach is cumbersome and susceptible to numerical problems, which limits the
applicability and adoption of this research in practice. Therefore, we also provide approximations and
characterize their quality (in Appendix D). In particular, we use the central limit theorem (CLT) to ap-
proximate ∑n

i#1 ρivi for both T # 1 and T # −1, and obtain the following result.

Proposition 5. If the pi and qi are i.i.d.,

P Rρ(v) # T
( ) ≈ 'Φ

n 2 σ2p + µ2
p

( )
− µp

( )
−mp

̅̅
n

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2p + µ2

p − 2 σ2p + µ2
p

( )
− µp

( )2
√

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 1 − '
( )

Φ
n 2 σ2q + µ2

q

( )
− µq

( )
−mq

̅̅
n

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2q + µ2

q − 2 σ2q + µ2
q

( )
− µq

( )2
√

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where Φ is the standard normal distribution. Furthermore, if 2(σ2p + µ2
p) > µp and 2(σ2q +µ2

q)> µq, then limn→∞P ×
(Rρ(v) # T) # 1.

The approximation for the PCCA for finite n can be easily implemented in Matlab (the normcdf function) or
Microsoft Excel (the norm.s.dist function). We also point out that, in contrast to Proposition 1, which only
requires the means µp and µq of the distributions fp and fq, respectively, the approximation in Proposition 5
also requires the standard deviations σp and σq. However, this latter information requirement is still less
demanding than that for calculating the exact probability, via numerical convolution and integration, which
requires the full distributions fp and fq.

As in Section 4.1, we explore the accuracy-weighted voting rule under correlated voters. Using the same
methodology previously explained except applied to Equation (11), we obtain very similar results to that for
the majority-rule mechanism, which is presented in Figure 4. In particular, for a given number of voters, the
PCCA is reduced as the correlation coefficient is increased. However, there are differences between Figures 4
and 2 in that the former is effectively a shifted (upward) version of the latter; in other words, for a given
correlation coefficient and number of voters n, the PCCA for the accuracy-weighted rule is larger than that for
majority rule. We explore the precise benefit of accuracy votes later in this section via an appropriate version
of problem (2).

5.1.1. Type I and II Error Probabilities. We continue our analysis by determining approximations for the
probabilities of type I and II errors.

Figure 4. The PCCAs for Various Correlation Coefficients
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Proposition 6. If the pi and qi are i.i.d., the probability of a type I error is

P
(
Rρ(v) # −1|T # 1

) ≈ Φ
−mq − n 2 σ2p + µ2

p

( )
− µp

( )

̅̅
n

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2p + µ2

p − 2 σ2p + µ2
p

( )
− µp

( )2
√

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the probability of a type II error is

P
(
Rρ(v) # 1|T # −1) ≈ Φ

−mp − n 2 σ2q + µ2
q

( )
− µq

( )

̅̅
n

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2q + µ2

q − 2 σ2q + µ2
q

( )
− µq

( )2
√

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where Φ is the standard normal distribution.

As in Section 4.1, we demonstrate how to determine the minimum number of voters n to obtain any desired
PCCA while limiting the probabilities of type I and II errors. Again suppose that we require the probability of
a type I error to be at most ε ∈ (0, 0.5), the probability of a type II error to be at most ε ∈ (0, 0.5), and a PCCA of
at least γ ∈ (0.5, 1). We, thus, solve the following variant of problem (2):

min
n,mp,mq

n

s.t. P
(
Rρ(v) # T

) ≥ γ

P
(
Rρ(v) # −1|T # 1

) ≤ ε

P
(
Rρ(v) # 1|T # −1) ≤ ε. (13)

Proposition 6 can be used to determine values of mp and mq as a function of n to attain these target error
probabilities. Observing that

Φ
−mq − n 2 σ2p + µ2

p

( )
− µp

( )

̅̅
n

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2p + µ2

p − 2 σ2p + µ2
p

( )
− µp

( )2
√

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≤ ε

⇔ −mq ≤ n 2 σ2p + µ2
p

( )
− µp

( )
+

̅̅
n

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2p + µ2

p − 2 σ2p + µ2
p

( )
− µp

( )2
√

Φ−1(ε),

we set

mq # −n 2 σ2p + µ2
p

( )
− µp

( )
−

̅̅
n

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2p + µ2

p − 2 σ2p + µ2
p

( )
− µp

( )2
√

Φ−1(ε).

Similarly, we set

mp # −n 2 σ2q + µ2
q

( )
− µq

( )
−

̅̅
n

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2q + µ2

q − 2 σ2q + µ2
q

( )
− µq

( )2
√

Φ−1(ε).

Plugging these consensus parameters into the PCCA expression from Proposition 5, we are able to determine
the minimum number of voters needed to meet our target probabilities.

Example 4. We demonstrate this procedure using the parameter values ε # ε # 0.01 and γ # 0.98. We let fp and fq
be beta distributions with β # 1, and we choose α’s so that the means of the beta distributions match those of
Example 1, namely (µp, µq) # (0.8, 0.6). Applying the preceding procedure, we obtain the optimal solution to (13) as
(n,mp,mq) # (12, 1.7659,−1.4178); recall that, in Example 1, the majority-rule mechanism required (n,mp,mq) #
(28, 8,−4), and we conclude that fewer voters are required for the accuracy-weighted rule for a given (γ, ε, ε)
combination. To complete this example, we also calculate the exact PCCA for the accuracy-weighted rule for our
optimal parameters, calculated using numerical convolution and integration with a discretization step size of
δ # 0.0001 and we determine that the PCCA # 0.9787 ≈ γ, providing evidence that our approximations are of high
quality (further evaluations of the approximations can be found in Appendix D).

We now consider correlated voters via numerical studies as in Section 4.1. We again assume that fp is
uniformly distributed on [0.75, 1.0] and fq is uniformly distributed on [0.5, 1.0]. We solve problem (13) nu-
merically using a similar approach to that outlined for the solution of problem (8). Table 4 reports on the
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optimal values of n, mp, and mq for ε # ε # 0.01, γ # 0.98, rp # rq ∈ {0.00, 0.50, 0.99}, and ' # 0.5. To facilitate
comparisons between the solutions to problems (8) and (13), we also list, in parentheses, the optimal values
of n, mp, and mq from Table 2.

Table 4 shows that the accuracy-weighted voting rule requires fewer voters than the unit-weighted voting
rule to attain a target PCCA for given limits on the error probabilities. Furthermore, the gap increases with the
common correlation coefficient, and we may conclude that the accuracy-weighted rule is more adept at
handling correlated voters. However, there is a clear trade-off as the accuracy-weighted rule is more difficult
to implement. An exact implementation, which fully leverages the distributions fp and fq, requires sophis-
ticated computational analysis that is susceptible to numerical problems. An approximate implementation that
only requires the means and standard deviations of the distributions fp and fq is potentially inaccurate;
however, the quality of the approximations in Table 4 is encouraging. These approaches, centered around
exact and approximate expressions for the PCCA, are only applicable for independent voters; correlated voters
require a fully numerical solution approach that combines generation of correlated accuracies via the Gaussian
copula method, Monte Carlo simulations to evaluate the appropriate probabilities, and numerical optimization
over a grid of variable values. Finally, the estimation of the accuracies pi and qi for each voter i can be
burdensome as discussed in Section 3.1. Thus, although the performance of the accuracy-weighted rule is
clearly superior, the implementation difficulties are not negligible, and a manager might settle for the simpler
majority-rule voting mechanism because of ease of implementation.

5.2. Dynamic Determination of Number of Voters n via Sequential Hypothesis Testing
In this section, we consider an analogue to the dynamic determination of the number of voters n via random
walks in Section 4.2 for unit weights under independent voters. Here, for accuracy weights, the aggregation of
the first k votes in Equation (11), ∑k

i#1 xi, where xi # ρivi, returns the position of a random walk after k steps.
Note that the walk is no longer simple because the xi are continuously distributed on [−1, 1] rather than on
{−1, 1}, according to one of the distributions, g or h, in Lemma 1. We may define the stopping time as the
number of voters n, where one of the consensus parameters is exceeded,

n # min k ≥ 1 :
∑k

i#1
xi ≥ mp or

∑k

i#1
xi ≤ −mq

{ }
, (14)

where mp and mq are positive values (again, to preclude a trivial stopping time) though not necessarily integer.
Unfortunately, to the best of our knowledge, analogues of the closed-form expressions in Propositions 3 and 4
do not exist for random walks with continuously distributed step sizes xi # ρivi. Therefore, we take a different,
yet related, approach based on the concept of sequential hypothesis testing as pioneered by Wald (1945). The
core idea of this approach is to ascertain whether distribution g or h from Lemma 1 generates the weighted
votes xi # ρivi. Therefore, the technique works best when g and h are dissimilar. Also note that, even if fp and fq
are identical, g and h are different.

We formally define our hypotheses as H0 : T # 1 and H1 : T # −1, which coincides with our previous
definitions of type I and II errors; note that, under H0, Lemma 1 indicates that xi # ρivi has density g, and
under H1, the density is h. Slightly abusing notation (for clarity), assume that k data points, xi, i # 1, . . . , k, are
available. Standard (static) hypothesis testing defines the likelihood ratio as

Λ x1, . . . , xk( ) #
∏k

i#1

h(xi)
g(xi)

. (15)

This ratio is compared with a threshold η; if Λ(x1, . . . , xk) ≥ η, H0 is rejected; otherwise, H0 is accepted.

Table 4. Optimal Solutions to Problem (8) for ε # ε # 0.01 and γ # 0.98 and
rp # rq ∈ {0.00, 0.50, 0.99}
(
µp, µq

)
rp # rq # 0.0 rp # rq # 0.5 rp # rq # 0.99

n 9 (11) 13 (17) 17 (23)
mp 0.90 (2) 1.90 (4) 2.90 (6)
mq −0.80 (−2) −1.10 (−4) −2.00 (−3)
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In sequential hypothesis testing, a third option of generating more data is available. In particular, there exist
two thresholds 0 < B < A < ∞ so that hypothesis testing can be implemented in a dynamic manner:

if Λ(x1, . . . , xk) ≤ B, accept H0
if Λ(x1, . . . , xk) ≥ A, accept H1
if B < Λ(x1, . . . , xk) < A, generate sample xk+1 and repeat.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

By calculating the log-likelihood ratio

log(Λ(x1, . . . , xk)) #
∑k

i#1
log

h(xi)
g(xi)

( )
,

and letting zi # log(h(xi)g(xi)), we may interpret ∑k
i#1 zi as a random walk. We introduce an alternative definition for

the stopping time n (i.e., number of voters) in terms of this new random walk:

n # min k ≥ 1 :
∑k

i#1
zi ≥ log(A) or

∑k

i#1
zi ≤ log(B)

{ }
. (16)

Wald (1945) showed that, as long as the xi are independent, P(n < ∞) # 1, which implies that P(Rρ(v) # 0) # 0;
we referenced a similar result for simple random walks in Section 4.2.

The classic analysis of sequential hypothesis testing is intimately linked with target probabilities of type I
and II errors, which is convenient for our analysis. In particular, requiring P(Rρ(v) # −1|T # 1) ≤ ε and
P(Rρ(v) # 1|T # −1) ≤ ε, Wald (1945) suggests using the boundaries

A # 1 − ε
ε

and B # ε
1 − ε

, (17)

which have come to be known as the Wald boundaries (Ghosh and Sen 1991). Note that there is a subtle
approximation in the derivation of these boundaries, which is why we can sidestep the lack of relevant
analogues to Propositions 3 and 4 for a random walk with continuously distributed steps xi; fortunately, it has
been argued (Wald 1945, Ghosh and Sen 1991) that the approximation is high quality as long as the expected
value of zi is small with respect to log(B) and log(A). Indeed, the decision rule associated with (16) combined
with the Wald boundaries (17) is known as the sequential probability ratio test and has been proved under quite
general settings to be optimal among all sequential tests in the sense that the expected stopping time is
minimal for target probabilities of type I and II errors; see Wald and Wolfowitz (1948) for further details. The
PCCA and the expected number of voters are given in the next two propositions.

Proposition 7. The PCCA is

P
(
Rρ(v) # T

) ≈ ' 1 − ε( ) + 1 − '
( )(1 − ε).

Proposition 8. The expected number of voters is

E[n] ≈ '
ε log 1−ε

ε

( ) + (1 − ε) log ε
1−ε
( )

∫ 1
−1 log

h(t)
g(t)

( )
g(t)dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + (1 − ') 1 − ε( ) log 1−ε

ε

( ) + ε log ε
1−ε
( )

∫ 1
−1 log

h(t)
g(t)

( )
h(t)dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Table 5. Number of (Expected) Voters n to Obtain γ # 0.98 and ε # ε # 0.01 for Various (µp, µq), Where fp and fq Are
Beta Distributions
(
µp, µq

) (0.6, 0.6) (0.7, 0.6) (0.8, 0.6) (0.9, 0.6) (0.9, 0.7) (0.9, 0.8) (0.9, 0.9)

E[n] (Section 5.2) 5 5 5 5 4 3 2
n (Section 5.1) 27 19 12 7 6 4 3
E[n] (Section 4.3) 103 43 21 12 8 6 3
E[n] (Section 4.2) 146 74 54 40 18 11 7
n (Section 4.1) 122 54 28 16 12 9 5
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In the remainder of this section, we present the results of computational studies that compare the (expected)
number of voters required for (a) static implementation of simple majority voting (Section 4.1), (b) dynamic
implementation of simple majority voting (Section 4.2), (c) the hybrid strategy of Section 4.3, (d) static
implementation of accuracy-weighted voting (Section 5.1), and (e) dynamic implementation of accuracy-
weighted voting (Section 5.2). In Table 5, we consider the case in which fp and fq are beta distributions with
various means. Similarly, in Table 6, we consider the case in which fp and fq are uniformly distributed with
various means. Note that the results from Sections 4.1–4.3 are omitted from Table 6 because they are the same
as those in Table 5. In other words, although the distributions are different, the means are the same, and hence,
the number of voters is the same for simple majority-rule crowdvoting because these simpler strategies only
require the means.

Tables 5 and 6 show us that the crowdvoting implemented via sequential hypothesis testing results in the fewest
expected number of voters in all cases tested for independent voters. For high-accuracy voter populations (e.g., last
column of Table 6), the static n is comparable to E[n], so the static approach is perhaps preferred because it is a
deterministic guarantee. In contrast, for medium- to low-accuracy populations, E[n] is much smaller than n, so the
sequential hypothesis testing approach is clearly preferred.

We also shed some light on the cases in which sequential hypothesis testing had difficulties; in the left panel of
Figure 5, we present the densities g and hwhen fp and fq are uniformly distributed with means (0.6, 0.6), and it can
be seen that the densities are similar, resulting in E[n] # 41; in the right panel, we present g and hwhen the means
are (0.8, 0.6), which have mutually exclusive domains in which the densities are positive, resulting in E[n] # 1.

However, circumstances exist in which sequential hypothesis testing is not applicable, namely the case in which
the densities g and h are equal. The simplest case that demonstrates this is possible is when the crowd simply flips a
fair coin when voting; in other words, pi # qi # 1/2 deterministically, which we can represent using Dirac delta
functions: fp(t) # δ(t − 0.5) and fq(t) # δ(t − 0.5). Applying Lemma 1, we obtain

g(t) # tδ(t − 0.5), t ∈ [0, 1]
(1 + t)δ(−t − 0.5), t ∈ [−1, 0) and h(t) # (1 − t)δ(t − 0.5), t ∈ [0, 1]

−tδ(−t − 0.5), t ∈ [−1, 0),
{{

and we see that g(t) # h(t) for all t ∈ [−1, 1].

Table 6. Number of (Expected) Voters n to Obtain γ # 0.98 and ε # ε # 0.01 for Various (µp, µq), Where fp Is a Uniform
Distribution on [µp − 0.1, µp + 0.1] and fq Is a Uniform Distribution on [µq − 0.1, µq + 0.1]
(
µp, µq

) (0.6, 0.6) (0.7, 0.6) (0.8, 0.6) (0.9, 0.6) (0.9, 0.7) (0.9, 0.8) (0.9, 0.9)

E[n] (Section 5.2) 41 1 1 1 1 1 3
n (Section 5.1) 104 43 20 9 7 5 3

Figure 5. The Densities g and h When fp and fq are Uniformly Distributed with Means (0.6, 0.6) (Left Panel) and (0.8, 0.6)
(Right Panel) Under the Sequential Hypothesis Testing Model
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We also comment on correlated voters. Unfortunately, there is no existing literature (to the best of our
knowledge) for applying sequential hypothesis testing to correlated data, and developing this theory is
outside the scope of this paper. Therefore, we are unable to apply this dynamic technique to correlated voters,
and we recommend using the numerical approach discussed in Section 5.1 when voters are strongly correlated.

Finally, we comment on practicality. Although the dynamic version of accuracy-weighted voting has the
strongest performance of all voting mechanisms considered in this paper (with a few exceptions, detailed
earlier), it is also undoubtedly the most difficult to implement in practice as it requires the g and h densities,
which, in turn, require full knowledge of the fp and fq densities. The portfolio of voting mechanisms studied in
this paper provides a manager a menu of options of increasing performance associated with increasing
difficulty of implementation. Thus, a manager can adopt the most complex and highest performing voting
mechanism that can be realistically implemented given the specific context and behavior of their online com-
munity members.

6. System Considerations and Limitations of Self Policing
In this section, we synthesize the results of all the previous sections to provide guidelines for designing a cost-
effective crowdvoting system. We begin by assuming that an assessment must be resolved within a pre-
determined time from when the complaint was generated. For example, in the Xbox Live service, the desired
turnaround time to provide a response to the complaint is 24 hours.

6.1. Supply and Demand of Assessments
In this section, we first elaborate upon volunteer voter participation, which provides a supply of (voters
willing to evaluate) assessments. However, although a single voter might participate even without financial
compensation, the voter’s participation is clearly not unlimited, and therefore, the supply of voters is not
unlimited; see Section 2.1 for further details of voter participation. For concreteness, suppose that M gamers
are logged in and available to perform assessments at some point during a given 24-hour period. Note that M
can be substantially less than the size of the online community (48 million in the Xbox Live case) because the
gamers have to be logged in during a given 24-hour period. Assuming that each of the M gamers logs in once
during the 24-hour period and is willing to evaluate m assessments on average, there is a supply of Mm votes
available during these 24 hours; Section 2.1 outlines how a gamer would determine m.

Considering the demand for assessments, suppose that there are N assessments that need to be resolved
during the 24-hour period. The techniques detailed in Sections 4.1–4.3, 5.1, and 5.2 allow us to derive the
(expected) number of voters needed under each of the voting rules for target values of error probabilities and a
target PCCA value. For ease of exposition, we let n represent the (expected) number of voters required for a
single assessment under one of the techniques analyzed in this paper. This implies that we have a demand for
Nn total votes in the 24-hour period.

A system cannot necessarily rely completely on the crowd to assess all content. For instance, if Nn > Mm,
then there are not enough votes available to vote on all assessments, and the firm must rely on (costly) internal
experts; note that Nn > Mm is always possible if the target error probabilities are chosen to be small enough
and the target PCCA is chosen to be high enough. Furthermore, if a crowd vote is inconclusive (R(v) # 0),
then a firm expert is likely to be used. In other words, the employee assessment cost in problem (1) is positive
at optimality. We let C denote the cost for an internal expert to evaluate one assessment; for example, assuming
that an internal expert’s salary is $20/hour and each assessment takes 30 seconds, C #$20/120 # $0.17. The
expected 24-hour firm cost (i.e., the employee assessment cost) for evaluating all assessments is, therefore,

cost24 # C
max Nn −Mm, 0{ }

n

⌈ ⌉
+ min{Mm,Nn}

n

⌊ ⌋
P(R(v) # 0)

( )
. (18)

The expression max{Nn −Mm, 0} represents the vote shortfall, 2max{Nn−Mm,0}
n 3 represents the corresponding number

of assessments that an internal expert must evaluate, 4min{Mm,Nn}
n 5 is the number of assessments assigned to the

crowd, and 4min{Mm,Nn}
n 5P(R(v)#0) represents the expected number of inconclusive crowd assessments that must be
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handled by a firm expert. Note that the dynamic determinations of n considered in Sections 4.2 and 5.2 result
in P(R(v) # 0) # 0.

6.2. Suggested Type I and II Error Probability Structure
Suppose that the probability of a type I error is required to equal ε ∈ (0, 0.5), the probability of a type II error
ε ∈ (0, 0.5), and a PCCA equal to γ ∈ (0.5, 1). Note that, if ε # ε # 1 − γ, then

P R(v) # 0( ) # 1 − P
(
R(v) # T

) − P
(
R(v) # −T)

# 1 − γ − (
'P

(
R(v) # −1|T # 1

) + (
1 − '

)
P
(
R(v) # 1|T # −1))

# 0.

Therefore, we recommend the parameters (ε, ε, γ) be set in this way so that all crowd assessments are conclusive
(not necessarily correct), and any assessment that goes to the crowd never goes to a costly firm expert. In
addition, the three-parameter design vector (ε, ε, γ) simplifies to a scalar parameter design (1 − γ, 1 − γ, γ), a
convenience for practice. Under these parameters, the 24-hour cost in Equation (18) simplifies to

cost24 # C
max Nn −Mm, 0{ }

n

⌈ ⌉
, (19)

which is only positive if there are not enough crowd votes available. Of course, this cost can always be positive
if γ is selected close enough to one.

6.3. Limits of Crowdvoting
In this section, we determine the limits of crowdvoting. In particular, we leverage the error probability
structure of the previous section, (ε, ε, γ) # (1 − γ, 1 − γ, γ), and the resulting cost expression in Equation (19) to
determine the maximum value of the PCCA (γ) that can be attained at zero cost. In other words, we want to
find the limit of a system in which no firm experts are utilized and the crowd assesses all complaints
conclusively. If this value of γ is too low, Equation (19) can be used to determine the cost of a target PCCA.

For simplicity, we focus on the majority-vote rule with a static determination of n (Section 4.1); an analysis
for the other voting rules is analogous. As an example, we consider average accuracies (µp, µq) # (0.8, 0.6) and
set ' # 0.5. We let M # 5, 000, 000, approximately 10% of the total population on the Xbox Live service, and set
m # 5. We let N # νM, where ν ∈ {50%, 25%, 10%, 1%}, to represent different rates of complaint generation from
the crowd; note that it is possible for a single user to generate multiple complaints. The maximum values of the
costless PCCA are given in Table 7.

Although a crowd is effectively limitless in many ways, a careful consideration shows that the crowd is not
omniscient. Table 7 provides clear evidence that there are limits to the ability of a crowd. Two crucial factors
drive these limitations. First, any individual member of the crowd has limited capacity for voting on as-
sessments. Second, there is an inherent feedback loop in crowdvoting in the sense that a large crowd can
generate a large number of complaints. The combination of these two factors effectively limits crowdvoting, an
insight that any decision maker involved with crowdvoting should know.

7. Conclusions and Model Extensions
The focus of our paper is to find the most efficient crowdvoting mechanisms for a firm to achieve target service
levels, viewed through an ease-of-implementation lens. We effectively consider four voting mechanisms,
defined along two dimensions, {static,dynamic} × {unit −weight, accuracy −weight}, as well as a static–
dynamic hybrid mechanism for the majority-rule case. If voters are statistically independent, the dynamic
accuracy-weighted mechanism, which utilizes sequential hypothesis testing and is analyzed in Section 5.2, is
best (assuming g +# h; c.f., Lemma 1). If voters are correlated, the method of Section 5.2 is not applicable, and
the best approach is the static accuracy-weighted mechanism of Section 5.1. However, these accuracy-
weighted voting mechanisms can be burdensome to implement because of their parameter-estimation re-
quirements; a manager might choose to adopt a simpler majority-rule mechanism that is easier to implement,

Table 7. Maximum Values of Costless PCCA for M # 5, 000, 000

N # 50% ×M N # 25% ×M N # 10% ×M N # 1% ×M

(µp, µq) # (0.8, 0.6) 90.0% 96.7% 99.8% ≈ 100%
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in which case the hybrid mechanism of Section 4.3 is best as it combines the benefits of dynamism and flexible
consensus parameters. Furthermore, we found that positive correlation between voters is detrimental to
system performance; this is due to diminished crowd diversity, which the literature has shown is a key factor
for high-performance crowdsourcing. Our paper also discusses the matching of multiple voters with multiple
assessments. We show that the crowd is not omniscient, and for high target values of the PCCA, expert (costly)
firm employees are needed. We also characterize the limits of a costless crowdvoting system that does not use
firm employees. We next discuss model extensions.

7.1. Dynamic Accuracies
Our paper assumes a static model, in which the distributions of voter accuracies, fp and fq, are stationary.
However, in reality, a voter’s ability to assess content might improve (or simply change) over time, which
implies that the distributions fp and fq might also change over time. In this section, we discuss the impact
dynamic accuracies would have on our models.

The majority-vote rules in Sections 4.1 and 4.2 are the least affected because only the means µp and µq of the
distributions are needed. A time series model could potentially capture the relevant shifts in the crowd’s
abilities. For instance, if µt

p is the mean in period t, then the mean in period t + 1 could be captured via
exponential smoothing, µt+1

p #αµt
p+(1−α)µ̃, where µ̃ is a current observation (sample) of the crowd’s mean ability

to determine T # 1. More sophisticated time series models, such as Holt–Winter’s method, can be used to
capture trend and/or seasonality.

The accuracy-weighted voting rules of Sections 5.1 and 5.2 are more affected by dynamic crowd accuracies.
The impact is reduced if the approximation in Proposition 5 is utilized because it only requires the means and
standard deviations of the distributions fp and fq. The standard deviations can also be tracked using time series
methods as discussed in the previous paragraph. However, if the exact probability P(R(v) # T) is required,
then the full distributions fp and fq must be updated. Because this is likely an arduous task with many technical
difficulties, we do not recommend using the accuracy-weighted rule if the exact probability is desired and the
accuracy distributions are not stationary. We similarly advise against the sequential hypothesis testing ap-
proach of Section 5.2 because the full distributions are utilized.

7.2. Nonbinary Voting Models
Our paper assumes a binary choice for each voter, corresponding to a binary underlying truth. In many
applications, there might be more than two voting options. For instance, relabeling slightly, suppose a vote
v ∈ {1, . . . ,L} for L ≥ 3. Arrow’s (1950) impossibility theorem tells us that, when there are three or more voting
options, no rank-ordering voting system can convert the individual voters’ preferences into a consistent
collective ranking (e.g., for a crowdvoting system). Therefore, generalizing our voting rules to three or more
alternatives is ill advised in our opinion, and we suspect that most of our results are not extendable to
this case.
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Appendix A. Proofs

Proof of Proposition 1. We first consider the case in which T # 1, where vi # 1 with probability pi, and vi # −1 with probability
1 − pi. The accuracy pi has distribution fp with mean µp ∈ [0, 1]. The conditional moment-generating function of vi is
E[esvi |pi] # pies + (1 − pi)e−s. We next calculate the unconditional moment-generating function

E esvi[ ] #
∫ 1

0
E esvi

⃒⃒
pi

[ ]
fp pi
( )

dpi #
∫ 1

0
pies + 1 − pi

( )
e−s

( )
fp pi
( )

dpi # µpes +
(
1 − µp

)
e−s,

which implies that P(vi # 1) # µp and P(vi # −1) # 1 − µp (i.e., a Rademacher distribution with parameter µp). If X is a binomial
random variable with n trials and probability of success µp, then

∑n

i#1
vi # X − n − X( ) # 2X − n.
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This observation allows us to evaluate the probability that

P Ru(v) # 1|T # 1( ) # P
∑n

i#1
vi ≥ mp

( )

# P X ≥ n +mp

2

⌈ ⌉( )

# 1 − Fµp

n +mp

2

⌈ ⌉
− 1

( )
,

where Fµp is the cumulative distribution function (CDF) of a binomial randomvariablewith n trials and probability of success µp.
The analysis for the case in which T # −1 is similar. If Y is a binomial random variable with n trials and probability of

success µq, then
∑n

i#1
vi # −Y + (n − Y) # n − 2Y,

and we can show that

P Ru(v) # −1|T # −1( ) # P
∑n

i#1
vi ≤ −mq

( )

# P Y ≥ n +mq

2

⌈ ⌉( )

# 1 − Fµq

n +mq

2

⌈ ⌉
− 1

( )
,

where Fµq is the cumulative distribution function of a binomial random variable with n trials and probability of success µq. Using
the distribution for T, we obtain an unconditional probability of correct crowd assessment:

P(Ru(v) # T) # ' 1 − Fµp

n +mp

2

⌈ ⌉
− 1

( )( )
+ (1 − ') 1 − Fµq

n +mq

2

⌈ ⌉
− 1

( )( )
. □

Proof of Proposition 2. Leveraging the proof of Proposition 1, the type I error can be written as

P(Ru(v) # −1|T # 1) # P
∑n

i#1
vi ≤ −mq

( )

# P X ≤ n −mq

2

⌊ ⌋( )

# Fµp

n −mq

2

⌊ ⌋( )
.

Likewise, the type II error can be written as

P Ru(v) # 1|T # −1( ) # P
∑n

i#1
vi ≥ mp

( )

# P Y ≤ n −mp

2

⌊ ⌋( )

# Fµq

n −mp

2

⌊ ⌋( )
. □

Proof of Proposition 3. Conditional on T # 1, we have a biased random walk in which the step vi obeys the following
distribution: P(vi # 1) # µp and P(vi # −1) # 1 − µp. Thus, standard probability theory (e.g., Steele 2000, page 6), determines the
probability of hitting mp before −mq as

1−µp

µp

( )mq − 1
1−µp
µp

( )mp+mq − 1
.

The required probability, conditional on T # −1, is symmetrical. □

Proof of Proposition 4. The proof is similar to that of Proposition 3 except it uses the expressions for expected hitting times of
biased random walks (e.g., Steele 2000, p. 6) for each value of T ∈ {−1, 1}. □
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Proof of Lemma 1. We suppress the subscript i. We first study the case in which T # 1.We consider the random variable x # pv,
which has the distribution P(x # p) # p and P(x # −p) # 1 − p, where p is drawn from distribution fp. The conditional CDF of x is
equal to

G t|p( ) #
0, t < −p

1 − p, t ∈ −p, p[ )

1, t ≥ p.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

We first consider the case in which t ∈ [0, 1], where the CDF

G(t) #
∫ 1

0
G t|p( )

fp p
( )

dp #
∫ t

0
fp p
( )

dp +
∫ 1

t
1 − p
( )

fp p
( )

dp # 1 −
∫ 1

t
p fp p

( )
dp,

which gives a density of g(t) # t fp(t) for t ∈ [0, 1]. Similarly, when t ∈ [−1, 0), the CDF is

G(t) #
∫ 1

0
G t|p( )

fp p
( )

dp #
∫ −t

0
0 fp p

( )
dp +

∫ 1

−t
1 − p
( )

fp p
( )

dp #
∫ 1

−t
1 − p
( )

fp p
( )

dp,

which gives a density of g(t) # (1 + t) fp(−t) for t ∈ [−1, 0).
If T # −1, then the random variable x # qv has the distribution P(x # −q) # q and P(x # q) # 1 − q, where q is drawn from

distribution fq. In this case, the conditional CDF of x is equal to

H(t|q) #
0, t < −q
q, t ∈ −q, q[ )

1, t ≥ q.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Repeating the preceding analysis, we get H(t) #
∫ t
0 fq(q)dq +

∫ 1
t q fq(q)dq for t ∈ [0, 1] and H(t) #

∫ 1
−t q fq(q)dq for t ∈ [−1, 0). The

corresponding densities are h(t) # (1 − t) fq(t) for t ∈ [0, 1] and h(t) # −t fq(−t) for t ∈ [−1, 0). □

Proof of Proposition 5. Suppressing the index i, the mean of ρv, conditional on T # 1, can be calculated using the conditional
density of Lemma 1:

E ρv|T # 1
[ ] #

∫ 0

−1
t(1 + t) fp(−t)dt +

∫ 1

0
t2 fp(t)dt # E p2

[ ] − E p
[ ]( ) + E p2

[ ] # 2 σ2p + µ2
p

( )
− µp.

Similarly, the conditional second moment is

E ρv
( )2 ⃒⃒⃒T # 1
[ ]

#
∫ 0

−1
t2(1 + t) fp(−t)dt +

∫ 1

0
t3fp(t)dt # E p2

[ ] − E p3
[ ]( ) + E p3

[ ] # σ2p + µ2
p,

which gives the conditional standard deviation
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
E ρv
( )2 ⃒⃒⃒T # 1
[ ]

− E ρv|T # 1
[ ]2

√
#

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2p + µ2

p − 2 σ2p + µ2
p

( )
− µp

( )2
√

.

Repeating the analysis for the T # −1 case, we obtain

E ρv
⃒⃒
T # −1[ ] #

∫ 0

−1
−t2fq(−t)dt +

∫ 1

0
t fq(t) − tfq(t)
( )

dt # −E q2
[ ] + E q

[ ] − E q2
[ ]( ) # µq − 2 σ2q + µ2

q

( )

and

E ρv
( )2 ⃒⃒⃒T # −1
[ ]

#
∫ 0

−1
−t3fq(−t)dt +

∫ 1

0
t2 fq(t) − tfq(t)
( )

dt # E q3
[ ] + E q2

[ ] − E q3
[ ]( ) # σ2q + µ2

q ,

which gives the conditional standard deviation
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
E ρv
( )2 ⃒⃒⃒T # −1
[ ]

− E ρv|T # −1[ ]2
√

#
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2q + µ2

q − 2 σ2q + µ2
q

( )
− µq

( )2
√

.
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Assumption 3 implies that the votes are independent. Conditional on T # 1, we use the CLT to approximate the
random variable ∑n

i#1 ρivi as a normal random variable with mean n(2(σ2p+µ2
p)−µp) and standard deviation

̅̅
n

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2p + µ2

p − 2 σ2p + µ2
p

( )
− µp

( )2
√

.

Likewise, when T # −1, we approximate ∑n
i#1 ρivi as a normal random variable with mean n(µq − 2(σ2q + µ2

q)) and standard
deviation

̅̅
n

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2q + µ2

q − 2 σ2q + µ2
q

( )
− µq

( )2
√

.

Finally,

P Rρ(v) # T
( ) # 'P

(
Rρ(v) # 1|T # 1

) + (
1 − '

)
P
(
Rρ(v) # −1|T # −1)

# 'P
∑n

i#1
ρivi ≥ mp|T # 1

( )
+ 1 − '
( )

P
∑n

i#1
ρivi ≤ −mq|T # −1

( )

≈ ' 1 −Φ
mp − n 2 σ2p + µ2

p

( )
− µp

( )

̅̅
n

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2p + µ2

p − 2 σ2p + µ2
p

( )
− µp

( )2√

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ (1 − ')Φ

−mq − n µq − 2 σ2q + µ2
q

( )( )

̅̅
n

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2q + µ2

q − 2 σ2q + µ2
q

( )
− µq

( )2√

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

# 'Φ
n 2 σ2p + µ2

p

( )
− µp

( )
−mp

̅̅
n

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2p + µ2

p − 2 σ2p + µ2
p

( )
− µp

( )2√

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ (1 − ')Φ

n 2 σ2q + µ2
q

( )
− µq

( )
−mq

̅̅
n

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2q + µ2

q − 2 σ2q + µ2
q

( )
− µq

( )2√

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. □

Proof of Proposition 6. Leveraging the proof of Proposition 5, the type I error can be written as

P
(
Rρ(v) # −1|T # 1

) # P
∑n

i#1
ρivi ≤ −mq|T # 1

( )

≈ Φ
−mq − n 2 σ2p + µ2

p

( )
− µp

( )

̅̅
n

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2p + µ2

p − 2 σ2p + µ2
p

( )
− µp

( )2√

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Likewise, the type II error can be written as

P
(
Rρ(v) # 1|T # −1) # P

∑n

i#1
ρivi ≥ mp|T # −1

( )

# 1 − Φ
mp − n µq − 2 σ2q + µ2

q

( )( )

̅̅
n

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2q + µ2

q − 2 σ2q + µ2
q

( )
− µq

( )2√

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

# Φ
−mp − n 2 σ2q + µ2

q

( )
− µq

( )

̅̅
n

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2q + µ2

q − 2 σ2q + µ2
q

( )
− µq

( )2√

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. □

Proof of Proposition 7. Because P(R(v) # 0) # 0, analytically, we have that

P(R(v) # T) # 'P R(v) # 1|T # 1( ) + 1 − '
( )

P R(v) # −1|T # −1( )
≥ '(1 − ε) + 1 − '

( )(1 − ε).

However, because there is an approximation associated with the Wald boundaries, we conservatively introduce the ap-
proximation. □
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Proof of Proposition 8.

E n[ ] # 'E n|T # 1[ ] + (1 − ')E n|T # −1[ ]

# '
E log Λ x1, . . . , xn( )( )|T # 1
[ ]

E[z|T # 1] + (1 − ')E log Λ x1, . . . , xn( )( )|T # −1[ ]

E[z|T # −1] (Wald′s Identity)

≈ '
ε log(A) + (1 − ε) log(B)

E log h(x)
g(x)

( )
|T # 1

[ ]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + (1 − ') (1 − ε) log(A) + ε log(B)

E log h(x)
g(x)

( )
|T # −1

[ ]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (assuming overshoot is negligible)

# '
ε log(A) + (1 − ε) log(B)

∫ 1
−1 log

h(t)
g(t)

( )
g(t)dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + (1 − ') (1 − ε) log(A) + ε log(B)

∫ 1
−1 log

h(t)
g(t)

( )
h(t)dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

# '
ε log 1−ε

ε

( ) + (1 − ε) log ε
1−ε
( )

∫ 1
−1 log

h(t)
g(t)

( )
g(t)dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + (1 − ') (1 − ε) log 1−ε

ε

( ) + ε log ε
1−ε
( )

∫ 1
−1 log

h(t)
g(t)

( )
h(t)dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. □

Appendix B. Accuracy Weights vs. Optimal Log-Odds Weights
Although the literature identifies the weights wi # log( ρi

1−ρi) as the optimal weights to maximize the PCCA for each n, we
were unable to obtain the more insightful closed-form solutions for these weights. Fortunately, the suboptimality is
minimal, as demonstrated in the following Monte Carlo simulation study. In particular, for each n ∈ {1, . . . , 20}, we
simulate 10,000 trials to evaluate the PCCA for both the accuracy weights wi # ρi and the log-odds weights wi # log( ρi

1−ρi),
when fp is a uniform distribution on [0.7, 0.9] and fq is a uniform distribution on [0.5, 0.7]. We plot both PCCAs in Figure B.1.
Furthermore, the average ratio of the accuracy-weight PCCA to the log-odds-weight PCCA is 0.9915, and the ratio
approaches one as n is increased. Finally, we observed similar results for different distributions fp and fq.

Appendix C. Nonmonotonicity of the PCCA
In this appendix, we demonstrate the cautionary result that the PCCA is not necessarily nondecreasing in the number of
voters n. In Figure C.1, we plot the PCCA as a function of n for various sets of parameters. We fix ' # 0.5, but note that the
following trends persist for other values of this parameter. We fix mp # mq # 1, but again note that the following patterns
also persist for other values of these parameters, including values in which mp +# mq. We see four possible trends in Figure C.1,
one per panel of the figure, associated with the parameter values (µp, µq) ∈ {(0.8, 0.6), (0.8, 0.5), (0.8, 0.45), (0.45, 0.45)}. Each
trend has a sawtooth pattern with local minima for every even n because of the potential of a tie rendering the crowd
vote inconclusive; a similar observation, under a different voting model, appears in Dougherty and Edward (2009).

Figure B.1. The PCCAs for Accuracy and Log-Odds Weights
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Therefore, we recommend avoiding an even number of voters under the unit-weight voting rule. We next explore each
trend in more detail.

On the top left, we consider the case in which µp > 0.5 and µq > 0.5 and observe that the PCCA is effectively (ignoring
even n) increasing in n to probability one, which agrees with the natural intuition that more voters is better. On the top
right, we keep µp > 0.5 but now set µq # 0.5 and observe that the PCCA is again increasing in n, but to the value
' + 0.5(1 − '); if µp # 0.5 and µq > 0.5, the limit would be 0.5' + (1 − '). The next two plots show the cautionary result that
the PCCA is not necessarily nondecreasing in the number of voters n. On the bottom left plot, we consider µp > 0.5 and
µq < 0.5, and we observe that the PCCA is unimodal in n with a maximum of 68% when n # 9 voters. It is natural to ask
when it is realistic that µq (or µp) is strictly less than 0.5. Possible drivers include bias and/or poor skill. For instance, voters
might encounter assessments that they think are offensive, but if they have previously taken part in similar behavior, bias
might drive them to vote that the assessments are not offensive. The motivation can be strategic or conscience driven. The
point is that values of µq < 0.5 (or µp < 0.5) should not be ignored. Finally, on the bottom right plot, we consider µp < 0.5
and µq < 0.5, and observe that the PCCA is strictly decreasing in odd n. These asymptotic behaviors are easily explained
by dissecting the result in Proposition 1. For instance, the binomial probability Fµp (2n+mp

2 3 − 1) approaches its normal

approximation Φ(n(12−µp)+mp
2 −1̅̅̅̅̅̅̅̅̅̅

nµp(1−µp)
√ ) as n → ∞. Consequently, if µp > 0.5, this binomial probability goes to zero; if µp < 0.5, the

probability goes to one; and if µp # 0.5, the probability goes to 0.5.

Figure C.1. The PCCA as a Function of n for (mp,mq) # (1, 1)
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Appendix D. Evaluation of Approximation in Proposition 5
In this appendix, we test the quality of the approximation in Proposition 5. We focus on the T # 1 case because the T # −1
case is symmetric. In particular, we compare the approximate probability A # Φ( n(2(σ2p+µ2

p)−µp)−mp̅̅
n

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2p+µ2

p−(2(σ2p+µ2
p)−µp)2

√ ) with the exact

probability E # P(Rρ(v) # 1|T # 1), which is calculated using numerical convolution and integration with a discretization
step size of δ # 0.0001. We report the percentage error E−A

E as a function of n for various assumptions on the underlying
accuracy distribution fp. We let fp be a beta distribution with parameters α and β with mean µp # α/(α + β) and standard

deviation σp #
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
αβ/((α + β)2(α + β + 1))

√
. We consider four sets of values for (α, β): (a) (α, β) # (1, 1) corresponding to a

uniform distribution on [0, 1], (b) (α, β) # (2, 2) corresponding to a symmetric unimodal distribution with a peak at 0.5, (c)
(α, β) # (1, 2) corresponding to a distribution that is right skewed, and (d) (α, β) # (2, 1) corresponding to a distribution that
is left skewed. Our results are plotted in Figure D.1 and can guide a manager to decide whether the approximation suffices
for a given distribution fp or whether a more sophisticated numerical implementation is needed. The approximation is best,
not surprisingly, for the case in which fp is a uniform distribution (top left panel). Because the normal approximation is
symmetric, the right-skewed beta distribution leads to positive errors (bottom left panel) and the left-skewed beta
distribution leads to negative errors (bottom right panel).

Endnote
1We focus on positive correlations. For large negative correlations and n ≥ 5, the covariance matrix was not well defined (i.e., not positive
definite); for small negative correlations, the PCCA was indistinguishable from the uncorrelated case.

Figure D.1. The Approximation Errors E−A
E as a Function of n
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