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Abstract. We formulate and solve static and dynamic models of inventory management
that lie at the intersection of robust optimization and optimal control theory. Our objec-
tive is to minimize cumulative ordering, holding, and shortage costs over a horizon [0, T],
where the variable is a nonnegative ordering rate function g(t) € #*[0, T]. The demand
rate function d(¢) is unknown and is only assumed to belong to an uncertainty set Q) =
{d(t) e £*[0,T): p, < (1/T) fOT d(t)dt < u,, a<d(t)<b, Vte[0,T]}; this set is motivated
by the strong law of large numbers for stochastic processes lim_,,(1/T) fOT d(t)dt =y,
where y is the mean drift. We analyze a static model, where the ordering rate function
must be fully specified at time zero, and three dynamic variants, where re-optimizations
are allowed during the planning horizon [0, T] at prespecified review epochs. In the
dynamic models, at review epoch 7 € [0, T], the past demand on [0, 7) is observable. In
the first dynamic model, we ignore this information, and define a variant of Q) that is well
formed for the remaining planning horizon [z, T]. In the second model, we define a variant
of Q for [7,T] that utilizes the past demand information, though we make a simplifying
technical assumption about the consistency of the demand on [0, T) and Q. In the third
dynamic model, we remove this assumption, and we remedy the arising complications
using the Hilbert Projection Theorem. In all cases we derive optimal closed-form ordering
rate functions that equal either the bounds a or b, or weighted averages of these bounds
(sb +ha)/(s +h) or (sa+hb)/(s + h), where s and h are the shortage and holding costs,
respectively. The strategies differ by when these four ordering rates are applied, which is
determined by an uncertainty-set-dependent partition of the remaining planning horizon.
Computational experiments, focused on studying the dynamic variants, supplement the
analytical results, and demonstrate that (1) the three variants exhibit comparable perfor-
mance under well-behaved stochastic demand and (2) the third variant has a significant
advantage when demand is seasonal, especially when the review frequency is appropri-
ately selected. Finally, computational comparisons with the omniscient strategy q(¢) =d(f),
for all t € [0, T], are encouraging.
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1. Introduction

ways from existing models. First, while the literature

In recent years robust optimization has emerged as a
popular and important approach to decision making
under uncertainty, where the model of uncertainty is
characterized by set membership rather than stochas-
tic distributions. One of the main reasons for the suc-
cess of the robust optimization paradigm is that it
frequently results in a tractable model, in contrast to
stochastic optimization formulations, which can suffer
from the curse of dimensionality. In a few cases, closed-
form solutions can be derived for robust models, pro-
viding additional intuitive understanding of the opti-
mal robust decisions.

In this paper we study a new robust model of inven-
tory management, and we derive new closed-form opti-
mal robust solutions. While robust inventory manage-
ment models have received substantial attention in
academic research, our approach differs in a number of
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on robust optimization focuses on finite-dimensional
models, we propose and study an infinite-dimensional
robust variant where the ordering variable is a function
and the uncertainty set is a set of demand functions;
consequently, our model is a natural robust analogue to
many inventory models that utilize ideas from optimal
control theory and represent demand as a stochastic
process (e.g., Brownian motion, renewal process). Sec-
ond, we structure our uncertainty sets using strong laws
of large numbers for stochastic processes as motivation,
which is in contrast to most of the robust optimization
literature that defines uncertainty sets from a struc-
tural viewpoint (interval, polyhedral, ellipsoidal, etc.);
furthermore, while some recent papers have designed
their uncertainty sets using the limit theorems of
probability as motivation, they focus on the finite-
dimensional central limit theorem (CLT), rather than
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strong laws of large numbers for stochastic processes.
Third, in contrast to most of the literature, we derive
closed-form robust ordering rate functions for a basic static
model and dynamic variants of it, where the order-
ing rate function can depend on the currently observed
inventory position function. Our model overlaps with
existing models in the following ways: we consider
the control of a single durable product over a finite
horizon, with no fixed ordering costs, zero lead times,
and backordering allowed; we assume demand is a
stochastic process, where the mean (e.g., drift parame-
ter of Brownian motion or mean interarrival time in a
renewal process) is known, but any other parameters
and relevant distributions (e.g., distribution of interar-
rival time) are not known. We next provide a literature
review to describe more details and better position our
contributions.

1.1. Literature Review

The field of robust optimization has burgeoned in
recent years and we do not attempt to provide a com-
prehensive literature review. We point the interested
reader to Ben-Tal et al. (2009) for an overview. A sim-
ilar statement can be made about inventory manage-
ment, and we suggest (Zipkin 2000) as a primer on
this vast field. We focus our review on the papers
most related to our work, which concentrates on three
streams: (1) robust inventory management, (2) optimal
control of stochastic inventory systems, and (3) robust
uncertainty sets motivated by the limit theorems of
probability.

The foundation of our paper can be found in
Bertsimas and Sim (2004), which introduce the notion
of a “budget of uncertainty” to reduce the conservatism
of robust optimization. Bertsimas and Thiele (2006)
apply the ideas in Bertsimas and Sim (2004) to for-
mulate a robust optimization model of inventory con-
trol, which can handle fixed costs, capacitated orders
and inventory, and network topologies. Bienstock and
Ozbay (2008) generalize (Bertsimas and Thiele 2006) in
multiple directions and also analyze data-driven robust
models, focusing on algorithmic issues. Mamani et al.
(2016) study a similar inventory problem to that in
Bertsimas and Thiele (2006) and Bienstock and Ozbay
(2008), except that the uncertainty sets are motivated
by the CLT, and closed-form solutions, in both static
and dynamic contexts, are derived. Other researchers
have studied robust inventory management from dif-
ferent perspectives. Chen et al. (2007) study generic
robust uncertainty sets allowing for asymmetry, result-
ing in a second-order cone counterpart and See and Sim
(2010) analyze a “factor-based” model of uncertainty,
which also results in a second-order cone program.
Wagner (2010, 2011) study robust inventory manage-
ment from the online optimization perspective. More
recently, Ardestani-Jaafari and Delage (2016), building
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upon the work of Gorissen and Hertog (2013), provide
approximation approaches for a broader class of robust
optimization problems involving sums of piecewise lin-
ear functions. Solyali et al. (2016) propose a new robust
formulation of inventory control based on ideas from
facility location, which results in polynomial-time solv-
ability when the initial inventory is negative or zero.
Our paper differs from this finite-dimensional literature
stream in that we study an infinite-dimensional control-
theoretic formulation, where the ordering strategy and
demand stream are represented by (Lebesgue square-
integrable) functions.

All the aforementioned papers deal exclusively with
finite dimensional models. Many researchers have
instead modeled stochastic inventory management as
(nonrobust) stochastic optimal control problems, typi-
cally using either (1) Brownian motion or (2) renewal
processes to model the evolution of demand. Harrison
et al. (1983) and Harrison and Taksar (1983) are some
of the first to model storage systems using Brownian
motion, and they derive optimal control policies for
such systems. Gallego (1990) utilizes Brownian motion
to represent cumulative demand in an inventory man-
agement system. Jagannathan and Sen (1991) also uti-
lize Brownian motion in an inventory model of blood
in a blood bank context. Wein (1992) approximates a
make-to-stock production system as a dynamic con-
trol problem involving Brownian motion. Asmussen
and Perry (1998) focus their study on an operator
calculus for matrix-exponential distributions, but also
apply their ideas to a (g, Q) inventory system driven by
Brownian motion. Liu and Song (2012) study the (S, T)
inventory policy under a variety of demand assump-
tions, including Brownian motion. Wu and Chao (2014)
utilize two-dimensional Brownian motion to simulta-
neously capture correlated cumulative demand and
production. Regarding renewal processes, Gallego and
van Ryzin (1994) utilize a price-dependent Poisson pro-
cess to model demand. Rosling (2002) studies different
cost-rate models under a renewal process of demand.
Plambeck and Ward (2006) and Plambeck (2008) uti-
lize renewal processes to model cumulative demand
in assemble-to-order systems. Federgruen and Wang
(2015) also utilize a renewal process of demand in an
inventory system with shelf-age dependent holding
cost and delay-dependent shortage cost. While we do
not explicitly utilize Brownian motion or renewal pro-
cesses in our paper, these stochastic processes motivate
the infinite-dimensional nature of our robust model.
Furthermore, our work can be considered a robust ana-
logue to these stochastic control-theoretic approaches
to inventory management.

We next discuss the design of robust uncertainty sets.
Historically, these sets have been designed as either
interval-based, polyhedral, ellipsoidal, or, more gener-
ally, simply convex. However, recently researchers have
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attempted to design uncertainty sets that capture salient
characteristics of certain limit theorems of probability.
The first example of such a work is Bertsimas et al.
(2011), which analyzes queuing networks with a robust
uncertainty set motivated by the probabilistic law of the
iterated logarithm. Next, Bandi and Bertsimas (2012)
provide an in-depth study of the use of CLT-style uncer-
tainty sets; these sets have been applied to information
theory by Bandi and Bertsimas (2011), option pricing by
Bandi and Bertsimas (2014b), auction design by Bandi
and Bertsimas (2014a), and queueing theory by Bandi
etal. (2015, 2016). More relevant to our paper is Mamani
etal. (2016), who studied robust inventory management
and whose design of uncertainty sets was also moti-
vated by the CLT. Our paper differs from this literature
stream in that our uncertainty sets are motivated by
strong laws of large numbers for stochastic processes,
rather than the finite-dimensional CLT or the law of the
iterated logarithm.

In our paper we consider both static models, where
the entire ordering rate function must be specified at
time zero, and dynamic models, where the ordering
rate function can be updated as uncertain parame-
ters are realized. We therefore also survey the recent
work on robust dynamic optimization. Ben-Tal et al.
(2004) introduce an “adjustable” robust optimization
problem, where some variables can be updated based
on realizations of uncertain parameters; these authors
prove that the general problem is NP-hard. This diffi-
culty has motivated researchers to study approxima-
tions, usually an “affinely adjustable” robust optimiza-
tion model, where the optimization is over the class
of linear policies in the uncertain parameters. Ben-Tal
et al. (2005) study such a model in a supply chain con-
text. Chen et al. (2008) utilize second-order cones to
improve upon the linear approximations in a generic
multiperiod problem. Georghiou et al. (2015) and Bert-
simas and Georghiou (2015) study alternative approx-
imations to the general adjustable robust optimization
problem. Bertsimas et al. (2010) prove the optimality of
affine policies for a general class of multistage robust
optimization models where random disturbances are
constrained to lie in intervals and are independent.
Iancu et al. (2013) continue the study of affine policies,
more fully characterizing the problem structures where
affine policies are optimal in dynamic robust opti-
mization. Mamani et al. (2016) study a rolling-horizon
variant of their basic static model, and show that it
exhibits encouraging computational performance with
respect to Bertsimas and Thiele (2006) and Bertsimas
et al. (2010). Solyal1 et al. (2016) also propose a rolling-
horizon variant of their static model whose computa-
tional performance also compares well with Bertsimas
and Thiele (2006), Ben-Tal et al. (2004), See and Sim
(2010), and others. In our paper we adopt this rolling-
horizon approach to design dynamic strategies, though
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we define and analyze three separate variants, which
depend on whether or not the observed demand stream
is consistent with the original robust uncertainty set;
this is a consideration that has not been studied in the
literature.

1.2. Contributions
Our paper provides a number of contributions to the
operations research literature:

1. We are the first to formulate and solve an inven-
tory management problem at the intersection of robust
optimization and optimal control theory, where model
primitives are functions, not vectors. We analyze a
basic static model and three dynamic variants based
on a rolling-horizon framework:

(a) In the first dynamic variant, at a review epoch
we define a version of the static uncertainty set that
does not depend on the observed demand, and we
solve the problem for the remaining horizon.

(b) In the second dynamic variant, at a review
epoch we define an uncertainty set that does depend
on the observed demand, and we make a simplifying
assumption to ensure the consistency of the observed
demand and the structure of original static uncer-
tainty set.

(c) In the third dynamic variant, we remove the
simplifying assumption of consistency, and we resolve
the arising complications by applying the Hilbert Pro-
jection Theorem via a novel decomposition of projec-
tions. If the projected demand stream is not too far
from the observed demand stream, we construct an
uncertainty set based on the projection; however, if the
projection is far, we recommend reparameterizing the
uncertainty set based on information learned from
the observed demand. To the best of our knowledge,
the issue of consistency has not been studied in pre-
vious rolling-horizon dynamic robust models (where
authors implicitly assume observed demand is consis-
tent, as in our second dynamic variant). We believe
this is an important issue to study since inconsistent
demand renders a rolling-horizon approach infeasible.

2. We motivate the design of our robust uncertainty
sets using strong laws of large numbers for stochas-
tic processes. This design choice continues the recent
trend of utilizing the limit theorems of probability to
design uncertainty sets. However, we are the first to
consider (1) the limit theorems of stochastic processes
as well as (2) strong laws of large numbers (the litera-
ture has focused on distributional limit theorems, such
as the CLT).

3. We derive optimal closed-form ordering rate func-
tions for the static problem and all three dynamic vari-
ants. All of these optimal strategies order at only four
different rates: the lower and upper bounds of the
demand rate a and b, and weighted averages of these
bounds (sb + ha)/(s + h) and (sa + hb)/(s + h), where s



Wagner: Robust Inventory Management: An Optimal Control Approach
Operations Research, 2018, vol. 66, no. 2, pp. 426-447, ©2017 INFORMS

429

and & are shortage and holding costs. There is also the
possibility of an impulse order to satisfy a backlog in
the dynamic cases. The ordering strategies differ by
when each order rate is applied, which is determined
by a partition of the planning horizon:

(@) In the static variant, the planning horizon
[0, T] is partitioned into two-three subintervals, based
on the value of p, + y, — (a +b), where p, and p, are
lower and upper bounds, respectively, on the average
demand rate p.

(b) In the first dynamic variant, at a review
epoch 7, the planning horizon [7,T] is again parti-
tioned based on the value of y, + 1, — (a +b).

(c) In the second dynamic variant, the planning
horizon [7,T] is partitioned based on the observed
demand and the values of u,, y;, a, and b.

(d) In the third dynamic variant, the partition of
[7, T] depends on a projection of the observed demand
onto an appropriately defined set, and the values of y,,
Uy, a,and b.

4. We complement our theoretical analyses with
computational experiments. We first focus on compar-
ing our first and third dynamic strategies (the second
is not always feasible) when demand is either (1) a
modification of Brownian motion or (2) stochastic with
positive trend and seasonality. For the former demand
stream, the two dynamic variants exhibit comparable
performance, whereas for the latter stream with sea-
sonality, our third dynamic variant has a substantial
advantage due to its ability to react to the seasonality.
We then study the impact of the review frequency and
show that for most scenarios, increasing the frequency
reduces the cost, except for the third dynamic variant
under seasonal demand; in this case, the review fre-
quency should be selected carefully, with respect to the
period of the seasonality, as this results in the best per-
formance for the seasonal demand. Finally, we include
computational comparisons between our robust strate-
gies and the omniscient strategy g(t) = d(t), for all
t € [0, T], which are encouraging.

While we focus on an inventory management con-
text, we are optimistic that similar approaches, com-
bining robust optimization with optimal control theory
and the limit theorems of probability, can be fruitful
for other problem contexts.

1.3. Paper Outline

In Section 2, we utilize strong laws of large numbers
for stochastic processes to motivate our robust uncer-
tainty sets. In Section 3 we analyze a basic static model,
where the robust ordering strategy must be fully char-
acterized at time zero. In Section 4 we introduce a
framework for analyzing dynamic rolling-horizon vari-
ants of the static problem; in particular, we consider
three different sequences of uncertainty sets that can
be utilized in a dynamic setting. The first sequence
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defines a new uncertainty set at each review epoch
that does not depend on the past demand realization;
the dynamic problem for these uncertainty sets is ana-
lyzed in Section 4.2. The second sequence of uncer-
tainty sets allows a dependence on the past realiza-
tion of demand, but assumes a simplifying notion of
consistency; this dynamic problem is analyzed in Sec-
tion 4.3.1. In Section 4.3.2, we remove the assumption
of consistency and utilize the Hilbert Projection The-
orem to reconcile an inconsistent demand realization
with our robust uncertainty sets. Computational exper-
iments, which compare our dynamic strategies under
different generators of demand and study the impact
of review frequency, are discussed in Section 5. Con-
cluding thoughts are given in Section 6. Certain proofs
are presented in the main text, to provide additional
insight, but most are provided in the appendix.

2. Robust Uncertainty Set Motivated by

Strong Laws for Stochastic Processes

In this paper we consider an infinite-dimensional
model indexed by time ¢ € [0, T], where the cumula-
tive demand up to time ¢ is represented by a func-
tion D(t). In this section, we discuss two common
stochastic-process models of D(f) used in the literature,
Brownian motion and renewal processes, that motivate
the definition of our robust uncertainty set. We first dis-
cuss Brownian motion, define a corresponding robust
uncertainty set, and then argue that the set is also rea-
sonable for representing a renewal process model of
demand.

2.1. Brownian Motion Model of

Cumulative Demand
Many researchers, as outlined in the introduction, have
modeled D(t) as Brownian motion with drift y and
instantaneous volatility o:

D(t) = ut +oB(t),

where B(t) is a standard Brownian motion process
(i.e., B(t) is a normal random variable with zero mean
and variance equal to t). While the strong law of
large numbers is perhaps best known in the finite-
dimensional case, it also applies for Brownian motion,
which states that
_D(t)
lim ——= =

t—o00

u, almost surely. (1)

However, there are a number of drawbacks to using
Brownian motion to model cumulative demand: (1) the
Brownian motion process can decrease and (2) Brow-
nian motion is nowhere differentiable. In practice,
cumulative demand cannot decrease, and the demand
rate is typically smoother (especially for high volume
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products). Therefore, we introduce the instantaneous
demand rate
dD(t)

d(h =7, @

which we assume exists for all ¢ € [0, T], is nonnegative,
and is bounded from above; in particular, we assume
that there exists values 0 < a < b < oo such that

a<d(t)y<b, Ytelo,T]. 3)

Thus, since a > 0, D(t) can only grow, which approx-
imates reality better than Brownian motion, and the
existence/boundedness of the derivative introduces
a type of smoothness into the model, which is also
(arguably) a better model of reality than nondifferen-
tiable Brownian motion. These observations lead us to
define a robust uncertainty set for the demand rate
function d(t) that (approximately) obeys the strong law
in Equation (1), for a finite horizon, and the smooth-
ness constraints in Expression (3).

We now formally define our function-space uncer-
tainty set. To formulate a rigorous model, we begin
with the measure space ([0,T], %([0,T]), m), where
%([0,T]) is the Borel g-algebra on [0,T] and m is
the standard Lebesgue measure. On this measure
space, we focus on the function space %[0, T] of
Lebesgue square-integrable functions on [0,T]; ie.,
Jorp | fI2dm < oo for all f € £%[0, T]. Note that £2[0, T]
is a complete metric space with inner product (f, g) =
Jo,r) fgdm and induced norm || f|| = /o 1 f>dm; in
other words, #*[0,T] is a Hilbert space. Since our
ground set is the interval [0, T] on the real line, we
utilize the notation [ f(t)dt for Jio, 71 f dm. We define
our robust uncertainty set in terms of the demand rate
function d(t) as

T
Q= {d € [0, T): p, < %/ d(t)dt < p,,
0

a<d(t)<b,Vte [O,T]}, )

where we assume a < py, < u < g, < b. The set Q
can be interpreted as representing most smooth ap-
proximations of nondecreasing Brownian motion sam-
ple paths with drift p over the horizon [0,T],
where (1/T) fOT d(t)dt € [u,, ] is an approximation
of the strong law in Equation (1). Furthermore, given
the smoothness constraints, this uncertainty set is
arguably abetter representation of real uncertainty than
Brownian motion. We shall also see that a robust model
built upon Q) is more tractable, leading to closed-form
solutions, which are uncommon in models using Brow-
nian motion.

Note that the range [u,, u,] is an uncertainty set
within another uncertainty set ((2), and our model is
implementable without knowing the exact value of p.
Furthermore, even if y was precisely known, strong
laws of large numbers do not necessarily hold under
finite durations T. Loosely speaking, if T is large, we
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can set u, and p, close to y; in contrast, if T is small,
the interval [u,, y,] must be larger, to allow inevitable
deviations from the limit. A straightforward parame-
terization, to control the degree of conservatism, is also
possible: u, = u—I"and u, = u+I'. In Section 3.2, we dis-
cuss a regression-based numerical study that provides
guidelines for setting the (y,, i, a,b) parameters, as a
function of the problem’s economics, to improve the
performance of the robust ordering strategy. Finally,
if the horizon T is large enough, and convergence is
assumed to (approximately) hold, one can set u, =
Uy = p, and still obtain closed-form ordering functions.

2.2. Renewal Process Model of
Cumulative Demand

Researchers have also modeled D(t) as a general re-
newal process, with arbitrary interarrival time distri-
butions. If we denote the mean interarrival time to
be 1/u, then the strong law of large numbers for
renewal processes is equivalent to Equation (1). The
constraints (1/T) fOT d(t)dt € [u,, u,] in the definition
of Q in Equation (4) can alternatively be viewed as an
approximation of the strong law for renewal processes.

The smoothness constraints in Equation (3) are
slightly more problematic, as a renewal process is
essentially a jump process, with a derivative equal to
either 0 or infinity. However, we do not aim to precisely
capture all characteristics of renewal process samples
paths in Q; rather, we argue that in certain situations,
Q) can serve as a good approximation of these sample
paths. For instance, if the interarrival time is (stochasti-
cally) small with respect to T, then the sample paths of
a renewal process can be well approximated by smooth
functions.

2.3. Parameterizations

We conclude this section by discussing the values of 1,
a, and b. The drift parameter u could be determined
by calculating the average demand rate from historical
data. The minimum and maximum rates could similarly
be estimated as the extreme values from historical data
over some time frame (assuming outliers are appropri-
ately removed); alternatively, 2 and b could be set at per-
centiles of historical data, say the 5th and 95th. Also, in
Section 3.2, we discuss a more comprehensive approach
for jointly selecting the (u,, 1,4, b) parameters.

In summary, we believe that the uncertainty set Q2 in
Equation (4) well represents the set of sample paths of
Brownian motion that would actually occur in practice.
The set Q) can also approximately represent the set of
sample paths of general renewal processes. The bene-
fit of using a robust model built upon Q is the greater
tractability and attainable closed-form solutions that
are rarely possible in stochastic optimal control. Fur-
thermore, the distribution of the interarrival times is
not needed in a robust optimization model.
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3. Static Robust Inventory Management

In this section we study a static model, where the
ordering rate function g(t) for the entire horizon [0, T]
must be specified at time ¢ = 0. While many inven-
tory applications in practice are dynamic, in the sense
that decisions can be adjusted with new information,
there is merit in studying static models. First, contrac-
tual obligations can require that all orders be specified
in advanced; Ardestani-Jaafari and Delage (2016) (see
Remark 7 in their section 6) and Mamani et al. (2016)
(see the introduction to their section 3) discuss such
cases. Furthermore, since robust dynamic models are
difficult in general (Ben-Tal et al. 2004 prove that a
generic adjustable dynamic robust model is NP-hard),
static models are frequently used as subroutines in the
design of rolling-horizon dynamic optimization mod-
els, as in Mamani et al. (2016) (see their section 4) and
Solyali et al. (2016) (see their section 4); we adopt a sim-
ilar approach in later sections. The static model con-
sidered in this section, for an arbitrary demand uncer-
tainty set Y, is

min /OT(cq(x) +y(x))dx

s.t. I(x):/x(q(t)—d(t))dt, Vxel0,T]
0
hl(x), VYdeY,Vxel0,T]
—sl(x), VdeY,Vxel0,T]
Vxel0,T], ®)

y(x)
y(x)
q(x) >0,

>
>

where g € £2[0,T] is the ordering rate function, I is the
inventory position function, and y € #*[0,T] captures
the mismatch cost max{hI(x),—sI(x)}, for all x€[0,T];
c is the purchasing cost rate, & is the holding cost rate,
and s is the stockout cost rate. We define uncertainty
per constraint, which is the more common approach
in the literature (e.g., Bertsimas and Sim 2004, Bertsi-
mas and Thiele 2006, Bienstock and Ozbay 2008, Ben-
Tal et al. 2004, Bertsimas et al. 2010, Mamani et al. 2016,
Solyali etal. 2016, etc.). However, other researchers have
focused on determining a single worst-case demand
instance per model, as in Gorissen and Hertog (2013)
and Ardestani-Jaafari and Delage (2016).

Denote the minimum and maximum cumulative
demands on [0, x], for all x € [0, T], as

D(x):min/xd(t)dt and D(x):max/xd(t)dt, (6)
deY Jo deY  Jg

respectively. Note that both D(x) and D(x) are non-
decreasing in x. An appealing characteristic of For-
mulation (5) is that we are able to find an optimality
condition that balances the costs associated with the
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worst-case cumulative demands D(x) and D(x), for all
x €0, T], as shown in the following lemma.

Lemma 1. If ¢ < sT, then the optimal robust ordering rate
function q* satisfies

1. [{ g (t)dt = (sD(x) + hD(x))/(s + h), for x € [0,
T—c/s].

2. g°(x)=0, forxe(T—c/s,T]

Ifc>sT, q"(x)=0forall x [0, T].

This lemma is similar in structure to Lemma 2 in
Mamani et al. (2016), though, since Formulation (5) is a
continuous linear program, our result is a condition on a
function, rather than a vector, and the proof technique
is consequently different as well. In our proof, we guess
the solution and prove it is correct using the weak dual-
ity of continuous linear programming (as strong dual-
ity does not necessarily hold). Furthermore, this lemma
is the main driving force of one of our main results,
Theorem 1, and after its presentation, we provide an
intuitive interpretation of it and Lemma 1 in terms of
the newsvendor model for the case where Y = Q.

Proof of Lemma 1. We rearrange Formulation (5) with
embedded optimization problems:

T
' d

min [ (eq(x) ()

s.t.%— i q(t)dt>r£1§[x{—/0‘ d(t)dt}, Vxel0,T]

M+/ q(t)dt>max/ d(t)ydt, Vxe[0,T]
S 0 deY  Jy

g(x)>0, Vxel[0,T]. (7)

Using Expressions (6), we obtain a continuous linear
program with a new auxiliary variable z € 20, T):

T
min / z(x)dx
0

s.t. z(x) > cq(x)+h/’ q(t)dt —hD(x), Vxel0,T]
0

z(x) >cq(x)—s/0x g(t)dt +sD(x), Vxe[0,T]

g(x)>0, Vxel0,T]. (8)

We first observe that, at optimality,
z(x) = max{cq(x) +h / q(t)dt —hD(x),cq(x)
0

—s/xq(t)dt+sf)(x)}, Vxe[0,T]. (9)
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We nextassume ¢ < sT and define A=T—c/s€[0,T];
the case where ¢ > sT is handled at the end of the
proof. Consider a feasible solution to Formulation (8)
characterized by

/ q(t) dt = M (10)

forx€[0,A]and g(x)=0forx € (A, T].Forx € [0, A],due
to Equation (10), the two arguments of the max operator
in Equation (9) are equal. However, for x € (A, T], the
second argument of the max operator in Equation (9)
dominates the first; to see this, we notice that

cq(x)+h/0x q(t)dt —hD(x)
< cq(x)—s/x g(t)dt +sD(x)
- / a(t)dt < sD(x)+hD(x)

o / a(t)dt < sD(x)+hD(x)

sD(A)+hD(A) sD(x) +hD(x)
s+h s+h

7

where the final inequality is due to (sD(x)+hD(x))/
(s+h) being nondecreasing in x.
We therefore assign the auxiliary variable z the value

cq(x)+h(%)—h@(x), €[0,A]
z(x)= _ "
sD(x)—s(%), x€(A,T],
1)
which results in an objective function value of
sD(A)+hD(A) A(sD(x)+hD(x)
(oo, (et )
. sD(A)+hD(A)
+s/A (D(x)—T)dx
PR
:h/O (%—D(x))dx
T
+s/A D(x)dx. (12)

The dual of Problem (8) is

T
max/(sD(x)v(x)—hD(x)u(x))dx,
0

s.t. u(x)+ov(x)=1, Vxe€[0,T],

—cu(x)—h/ u(t)dt —co(x)
+s v(t)dt <0, Vxel0,T],

u(x), v?x) >0, Vxel0,T],
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which, by substituting out the u variable, can be writ-
ten as

max /T(sD(x)+hD(x))v(x)dx—h/TD(x)dx

T
c+h(T-x)
S——— ,
s.t.[ v(t)dt p—y Vxe[0,T]
0<v(x)<1, Vxel0,T].

Next, consider the dual feasible solution

U(t) _ m, X € [O,A]

1, xe(A,T],

which has a dual objective value of

s+h/ (sD(x)+hD(x))dx+/A (sD(x)+hD(x))dx

—h/OAD(x)dx—h/ATD(x)dx

_ [?(sD(x)+hD(x) T
—h‘/0 (T—I_D(x))dx+s‘/A D(x)dx. (13)

Therefore, the primal value (12) and dual value (13)
are equal, and the solutions are optimal. We conclude
that [ q(t)dt = (sD(x) + hD(x))/(s + h) for x € [0, A]
and g(x) =0 for x € (A, T] is an optimal robust ordering
solution. If ¢ > sT, A <0, and a similar argument shows
that g*(x) =0forallx €[0,T]. O

Remark 1. Note that Lemma 1 can accommodate con-
tinuous discounting with no change in the final result.
More precisely, if the objective in Formulation (5) is
replaced with [ e=*(cq(x) + y(x))dx, for some & > 0,
the results do not change and do not depend on 6
(which can be seen by tracing the proof’s logic). There-
fore, for ease of exposition, we do not discuss discount-
ing in our paper.

Lemma 1 does not depend on the structure of Y.
However, letting Y = Q and utilizing the structure of
Q) leads to simple intuitive ordering strategies, which
we discuss next. Our first theorem leverages Lemma 1
to exactly characterize the optimal robust ordering rate
function ¢* when we assign Y = (). A representative
optimal ordering strategy from this theorem (for the
Ua+ Uy <a+b case) isillustrated graphically in Figure 1.

Theorem 1. Letting Y=, if ¢ <sT, then the optimal ro-
bust ordering rate function q*(x)=0 for xe (T —c/s,T] and
the following strategy for x € [0, T —c/s]:
Ifu,+p,>a+b:
(sb+ha)/(s+h), x€[0,(b—u,)T/(b-a)],
b, x€(b—p,)T/(b—a), (1
(sa+hb)/(s+h), xe((u,—a)T/(b—a),T];

—a)T/(b-a)],
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Figure 1. (Color online) Left: The Optimal Ordering Strategy q*(f) for the u, + 1, <a + b Case of Theorem 1, Where c = 20,
§=2,h=1,T=200, u, =8, u, =12, =10, 0 =3, a =6 and b = 15. Right: The Cumulative Orders of Theorem 1 Tracking
Cumulative Demand, Which Is Generated Using Truncated Normal Random Variables with Mean p and Standard Deviation
o as the Random (Nonnegative) Instantaneous Growth of Demand

0 50 100 150 200

if gy +py=a+b:
(sb+ha)/(s+h), x€[0,(b—u,)T/(b-a)],
{(Sﬂ+hb)/(5+h)f x€((b—p,)T/(b—a),T];

if u, +py, <a+b:

(sb+ha)/(s+h), xe€[0,(u,—a)T/(b—-a)],

[a, xe((u,—a)T/(b—a),(b-

(sa+hb)/(s+h), xe((b—u,)T/(b—a),T].

Ifc>sT, g*(x)=0for x€[0, T].

)T/ (b—a)],

Proof of Theorem 1. Given the structure of Q, we see
that

D(x) = mm/ d(t)dt =max{xa, u,T — (T —x)b},
0
Vxe[0,T] (14)
and
D(x) = m%x‘/ d(t)dt =min{xb, u, T — (T — x)a},
0
Vxel[0,T]. (15)
From Lemma 1, we have that

/Ox g (t)dt

= (s min{xb, u, T — (T — x)a}
+hmax{xa, u,T—(T—x)b})-(s+h)™", (16)

for x € [0,T —c¢/s] and g°(x) =0 for x € (T —¢/s,T],
assuming that ¢ < sT; if ¢ > sT, Lemma 1 implies that

TIGHTS LI N Ky
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2,000 A

1,500 Pl

-
-
-
-

1,000 L

500 //
0

0 50 100 150 200

—Q Iéq () dr
——Dt) fo (7) dr

g*(x)=0for all x € [0, T]. For the remainder of the proof,
we assume ¢ < sT and that Lemma 1 holds for x € [0, T],
and then simply truncate to [0,T —c/s].

The first argument of the max operator in Equa-
tion (16) dominates if x < (b — u,)T/(b —a) and the first
argument of the min dominates if x < (y, —a)T/(b —a).
The former threshold for x is strictly less than the latter
one iff u, + y, > a + b; therefore, we have three cases
to consider: (i) p, + y, >a+b, (ii) y, + p, =a+b, and
(iid) g, + pp <a+b.

In case (i),

'/Ox g (t)dt

sb+ha (b—u)T
( s+h )x, xe[O, b—a |
h(b_l’la)T (b_l’ia)T ([’lb_a)T
bx = s+h ~ xe( b-a ' b-a |
"\ {(sa+nb\  (su,+hu,—sa—hb)T
X+ ,
s+h s+h
((ub ”)T,T],
b—a
which, taking the derivative with respect to x, results in
sb+ha (b—p,)T
ET R R e
() = (b—u)T (g —a)T
Q(x)— b/ ( b a 7 b a 7
sa+hb (pp—a)T
Ttk xe(ﬂ”-
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In case (iii), we have that

X € O/M}/
b—a

s(uy— )T xe((ub—m (b—ua)T]’

s+h b—a ' b-a
| (sa+hnb (sup+hu, —sa—hb)T
+ ’
s+h s+h
b—u)T
xE(M’T},
b—a
which implies
sb+ha (p—a)T
s+h’ xE[O, b—a
o (pp—a)T (b—p,)T
q(x)_ ﬂ, xe( b—ﬂ 7 b—a
sa+hb (b—p,)T
o ve St

In case (ii), the middle scenario disappears. These solu-
tions are applied for x € [T —¢/s,T] and g*(x) =0
otherwise. O

3.1. Discussion of Theorem 1

To provide a more intuitive discussion, we consider the
case where u, = u, = u (i.e., T is large enough that con-
vergence approximately holds). Differentiating Equa-
tions (14) and (15), we obtain two demand functions
in (O

b—w)T
a, ift<(b—u)
d(t)= — and
. (b-pT
b, ift>———
b-a
-a)T
i b, ift<%
d(t) = ]
-a)T
0 ifts BT
b-a

The optimal robust solution in Theorem 1 balances the
influence of these two extreme demands. To see this,
consider demand that is uniformly distributed on the
interval [D, D] with CDF F, and consider further the
application of the newsvendor model with unit over-
age cost i and unit underage cost s. The standard
newsvendor solution Q* prescribes

Q-D s
D-D s+h
Associating Q* = [y ¢*(t)dt, D(x) = D, and D(x) = D

for any x € [0,T — c/s], we obtain the main case of
Lemma 1, which drives Theorem 1. Thus, our optimal

sD+hD

= Q= s+h

TN
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robust solution balances the influence of these two polar
extreme demands, as a function of the mismatch costs s
and & in a newsvendor fashion.

The optimal robust ordering strategy depends on the
relative sizes of u and (a + b)/2. Since p already has
the interpretation of the mean drift rate of demand,
we interpret (a + b)/2 as the median. Therefore, there
is a notion of skewness that influences the ordering
strategy. While linking the relative order of the mean
and median might be imprecise in a statistical sense
(see von Hippel 2005), it will suffice for our purposes.
If u > (a+0b)/2 we shall say our uncertainty set Q has
positive skew; likewise, if p < (a + b)/2, then we say Q
has negative skew; finally, if u = (a +b)/2, we say Q is
symmetric.

In all three cases of Theorem 1 (i.e., all skewness pos-
sibilities for Q), there is a partition of the horizon [0, T]
into two-three intervals, which we denote as “early,”
“middle,” and “late” (in the second case, there is no
middle interval); the specific partitions depend on the
level of skewness of Q. In all three cases, during the
early interval, the ordering rate is (sb + ha)/(s + h) and
during the late interval, the ordering rate is (sa + hb)/
(s + h); both ordering rates are simple weighted aver-
ages of the lower and upper bounds of the demand
growth rate. The ordering rates also depend on the rel-
ative values of s and h: if s > h, then the earlier order-
ing is faster, to avoid the more expensive stockouts,
and then the later ordering is slower to avoid inven-
tory holding cost; if s < i, the observation is reversed,
with slower ordering first, to avoid the more expen-
sive inventory holding cost, and then faster ordering to
avoid stockout costs.

We next focus our discussion on nonsymmetric Q
sets. The most prominent difference between the first
(positively skewed Q) and third (negatively skewed )
cases in Theorem 1 is the ordering level in the middle
interval. If Q) has positive skew, the upper bound on
the demand rate b is selected for the ordering rate;
the relatively large mean drift of demand, compared
to the median, induces the fast ordering in the middle
interval so that the orders can “catch up” to demand
that is growing fast. In contrast, if () has negative skew,
the mean drift is relatively small, and the lower bound
of the demand growth rate a is selected as the ordering
rate, allowing the slow-growing demand to catch up
with the supply.

3.2. Guidelines for Selecting (u,, i;,a,b)

We next provide a numerical study based on linear
regression to further explore the issues we addressed
above qualitatively for the special case where u, =
ty = . The economics are as follows: ¢ =20, s=2, h=1.
We set the true mean u =10 and standard deviation
0=3, and we generate the true demand using truncated
normal random variables with mean p and standard
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deviation o as the random (nonnegative) instantaneous
growth rate of demand. We consider p, € {8,9}, u, €
{11,12}, a € {6,7}, and b € {13,14}. These parameters
allow us to study asymmetry of u with respect to
both intervals [u,, ;] and [4,b]; in addition, the dif-
ferent combinations of the (u,, i;,,a,b) parameters lead
to all three of the cases in Theorem 1. For each set
of (., ly,a,b) values, we calculate the average per-
cent increase in inventory costs of the robust strategy
in Theorem 1 over the omniscient strategy of order-
ing g =d (which would require perfect knowledge of d
in advance), over n =10,000 simulation trials; in other
words, if Z°®* and Z: =c [ d(t)dt are the inventory
costs of our robust strategy and the omniscient strat-
egy in trial i, respectively, we return the average percent

increase
1 n Z;obust_z:_r

PI:EZZ—;'

i=1
these 16 experiments result in values of PI that ranged
from a minimum of 23.1% to a maximum of 76.9%,
with a mean (median) of 48.4% (47.0%). Note that our
baseline is the omniscient strategy of ordering q = d,
which is not implementable in practice, and thus pro-
vides a very conservative benchmark.

To understand the impact of the (u,, p,,4,b) param-
eters precisely, we fitted a multiple-variable linear
regression with these parameters as the independent
variables and PI as the dependent variable over the
16 observations (experiments), obtaining

PI=-5.378+0.106, +0.223u; 4+ 0.051a + 0.153b.

The adjusted-R? = 0.971, the a coefficient is significant
at the 0.01 level, and the other coefficients are signif-
icant at the 0.001 level. We observe that the u;, and b
parameters more strongly deteriorate the performance
of our robust strategy, and this is due to s > h. The
robust optimization approach, being naturally conser-
vative, avoids the more costly stockout; by setting the
U, and b parameters relatively large (with respect to
the u, and a parameters), we are exacerbating the con-
servatism, which results in higher costs. Alternatively,
if h > s, we observe the opposite effect of stronger nega-
tive impact from the p, and a parameters. In both cases,
the p, and u, parameters have a stronger impact (in
terms of regression coefficients) than the respective a
and b parameters. Consequently, this analysis provides
qualitative guidance on how to set the parameters as
a function of the s and h values: if the unit shortage
cost is greater than the unit holding cost, set u;, and b
relatively closer to y than u, and a, and vice versa if
holding costs are larger than shortage costs, in order to
avoid exacerbating the natural conservatism of robust
optimization.

3.3. Terminal Costs
In this section, we explore the impact of terminal costs
that are incurred at the end of the planning horizon at
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time t = T. In particular, we assume that there is a unit
underage cost F,, > 0 and a unit overage cost F, > 0 such
that the model incurs the terminal cost

max{F,I(T),-F,I(T)}.

These costs suggest a natural modification to the sec-
ond and third sets of constraints in the model in Equa-
tion (5), namely,

yx)z[h+F,0(x-T)|I(x), VdeY,Vxel0,T]

and

y(x)>—[s+F,0(x-T)]I(x), VdeY,Vxel0,T],
where ¢ is the Dirac delta function. It is straightforward
to show, by modifying the proofs of Lemma 1 and The-
orem 1 in a natural way, the following corollary, where
gy is the optimal ordering rate function under terminal
costs and g is the positive part of the optimal ordering
rate function from Theorem 1 (without terminal costs
and not restricted to x < T —¢/s).

Corollary 1. Letting Y =Q),

1. if ¢ <F,, then qp(x) = q*(x) for x € [0, T];

2. if F, <c<sT+F,, then q;(x) = q"(x) for x € [0, T -
(c=F,)/s]and q3(x)=0for x e (T - (c—F,)/s, T];

3. ifsT+F, <c, then qp(x) =0 for x € [0, T].

We conclude this section by providing intuition
about this corollary. In Case 1, the unit terminal cost
F, is greater than the unit purchasing cost, and order-
ing continues until time ¢ = T to minimize the chance
of a stockout. In Case 2, ordering stops at time f =
T —(c —F,)/s because it is cheaper to incur a shortage
for the remainder of the planning horizon than to pur-
chase new products; in other words, the cumulative
shortage cost per unit over the interval [t,T], for t > £,
is F, +s(T —t) < F, + s(T — f) = ¢; therefore, for t > £,
it is cheaper to incur the shortage costs for the remain-
ing horizon, than to procure new units. In Case 3, no
ordering ever takes place since it is cheaper to incur a
stockout for the entire planning horizon [0, T] than to
purchase any units. Finally, we point out that the ter-
minal overage cost F, does not play a role; this is due to
the model ending up with a shortage, as long as d € Q
(cf., Equation (11) for the x € (A, T] case); however,
note that if d ¢ (), the ordering strategy in Theorem 1
could indeed end with positive inventory, incurring
the F, cost.

4. Dynamic Robust Inventory Management
In this section we introduce and analyze numerous
dynamic variants of the static model studied in the pre-
vious section. These models allow us to study periodic
review in a variety of scenarios. Our models are nonan-
ticipatory. In other words, we consider a sequence
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of reoptimization models in a rolling-horizon frame-
work, rather than one where we can apply a Bellman
equation. The reason for this is that we are moti-
vated to derive closed-form solutions, which we found
to be intractable in various anticipatory models. Our
approach, in a function space, is analogous to that in
recent papers in finite-dimensional vector spaces, such
as Solyali et al. (2016) and Mamani et al. (2016).

To motivate our model, suppose that at time 7 € [0, T]
we have observed the past demand stream rate, which
we denote as d(t), t € [0, 7], and we have recorded the
past ordering strategy 4(t), t € [0, T]. Consequently, at
time 7, we also know the inventory position I(7) =
INCIOE d(t))dt. For now, we only assume that de
%[0, 7] and that d(t) > 0 for all t € [0, 7].

In what follows, the consistency of the observed
demand stream d with the uncertainty set Q will be
important. In particular, we define the projection P,(Q)
as the set of functions on [0, 7] that can be extended to
a function contained in Q:

P(Q) = {deggz[o,f]: L T-b(T-1)< /:i(x) dx < p, T
0

—a(T—T),a<d(x)<b,Vxe[0,T]}. 17)

We shall say that d is consistent with Qif d € P (Q). To
the best of our knowledge, the issue of consistency has
not been studied in previous rolling-horizon dynamic
robust models, and the standard assumption is that dis
indeed consistent; we are the first to study what can be
done if there is no consistency between observed real-
izations and the uncertainty set. Note that it is quite
possible that observed demand streams are inconsis-
tent, as the literature typically considers uncertainty
sets that do not span the support of the underlying
distribution (e.g., in Bandi and Bertsimas 2012, the
authors” uncertainty set only covers I' standard devi-
ations away from the mean for normally distributed
uncertainties). Furthermore, the discussion on Ben-Tal
etal. (2009, pp. 32-33) recommends choosing an uncer-
tainty set that is smaller than the distributional sup-
port. However, an inconsistent demand stream results
in problems of well-posedness and implementation of
a rolling-horizon strategy. A standard approach in a
rolling-horizon framework is to define an uncertainty
set for the remaining horizon as the intersection of the
observed demand stream and the original uncertainty
set; in our context, at time 7, an uncertainty set for [7, T]
can be defined as Q N d. However, if d ¢ P_(Q), then
the intersection is empty, and the robust optimization
model for [7, T] is not well defined. Indeed, in Mamani
et al. (2016), this issue is assumed away (see second
paragraph of section 4 in Mamani et al. 2016). In this
section, we study this issue in depth.
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In the following sections we present a basic analysis,
for various dynamic models, in terms of a single review
epoch 7. We begin, in Section 4.1, by providing gener-
alizations of Lemma 1 that allow for positive and nega-
tive initial inventories, respectively, at a generic time 7.
In Section 4.2, we present a myopic dynamic model
where at time 7 we utilize a new uncertainty set for
the remaining time horizon [, T] that does not depend
on the past demand realization d. In Sections 4.3.1 and
4.3.2 we define uncertainty sets on [, T] that depend
on the demand realization d. In the former, we assume
that d is consistent, d € P_(Q). In the latter section we
consider d ¢ P .(Q), and we find the nearest function
d e P.(Q) to d if d* is “not too far” from d, we build
an appropriate uncertainty set for [z, T] in terms of d;
if d* is “too far” from d, we build a new uncertainty set
for [7, T] based on the observed demand d.

4.1. Structural Results

As mentioned above, we consider various robust
uncertainty sets for the demand streams defined on
[7, T]. For now, we use Y as a generic uncertainty set
and later specify the full details of various sets. The
basic optimization problem used in our dynamic mod-
els, for a generic uncertainty set Y and initial inventory
position I(7), is

T
min / (cq(x) + y(x)) dx,

q(x)>0
st y(x) > h(1(1)+/x(q(t)—d(t)) dt),
VdeY,Vxe[r,T],

y(x) = -s (I(T) +/ (q(t) - d(t))dt),
VdeY,Vxe[t,T]. (18)

Once Model (18) is solved and an optimal robust
ordering rate function g*(t) is defined on [7,T] for a
given review epoch 7, we can easily extend the analysis
to a countable set of review epochs I = {14, 7,,...} C
[0, T]. At review epoch t; € I, we determine g4*(f) as
a function of I(7;) for t € [1;, T], but only apply it on
[7;,Ti41), and at time 7,,; we solve a new variant of
Model (18).

We also generalize Equations (6) for the generic
uncertainty set Y defined on [7,T], to determine the
minimum and maximum cumulative demands on

[7,x], forall x € [7,T]:

DY(x)= mm/ d(t)dt and

D) (x) =rglgrx/T d(t) dt. (19)

We shortly generalize Lemma 1 to accommodate a non-
zero initial inventory position I(7) for a generic uncer-
tainty set Y on [7, T]. We provide two lemmas, one for
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nonnegative initial inventory I(t) > 0 and another for
an initial backlog I(7) < 0. To concisely present the first
lemma, it is useful to define a threshold parameter for
the case of nonnegative initial inventory.

Definition 1. If I(t) > 0 and (sDY(T) + hDX(T))/
(s+h)=I(7),let

XT = minx
sDY(x)+hDX(x)
. . ——>1]
° s+h ()
T<x<T.

xT¥ is well defined and unique since (sD)(x) +
hDX(x))/(s +h) is nonnegative and nondecreasing in x.

Lemma 2. IfI(7) > 0, then the optimal robust ordering rate
function q* satisfies the following:
1. Ifc<s(T-t)and I(t) < (sDX(T)+hDX(T))/(s +h),
then
(@) if xY <T-c/s, then
i (0 =0, for x € [, x);
i, 7 q°(t)dt = (DY (x) + hDT(x)/(s + 1)~ 1(x),
for x € (X, T = c/s];
iii. g*(x)=0,forxe(T—c/s,T].
(®) If xY >T—c/s, then q*(x) =0 forall x € [t, T].
2. Ifc>s(T—1)orI(t)>(sDX(T)+hDX(T))/(s +h),
then g*(x) =0 forall x € [7, T].

Proof. The proof is similar to that of Lemma 1, and is
presented in the appendix. O

Lemma 3. IfI(1) <0, then the optimal robust ordering rate
function q* satisfies the following:
1. Ifc <s(T — ), then
(2) [ q(t)dt = (sDX(x) + hDX(x))/(s + 1)~ I(x), for
xe[t,T—-c/s];
(b) g*(x)=0, forx e (T —c/s, T].
2. Ifc>s(T—r), then q*(x) =0 forall x € [t, T].

Proof. The proof is similar to that of Lemma 2, and is
presented in the appendix. O

4.2. Sample-Path-Independent Uncertainty Set

At time 7, we consider an uncertainty set that does
not depend on the observed sample demand path
d(t), t €[0,7). A convenient characteristic of the fol-
lowing approach is that we do not need to concern
ourselves with whether or not d is consistent with Q;
consequently, this uncertainty set is perhaps the most
naive possible, and we later compare its performance
with more sophisticated approaches in Section 5.1,
demonstrating that in certain situations, this simple
approach suffices, whereas in other situations it offers
subpar performance. We define the uncertainty set Q,
as the set of demand rates on [7, T] that fall within the
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bounds a and b, and have an average drift value within
[, 1] over the interval [z, T]:

T
Q, = {d € £[7,T): y, < _Ti’[/ d(x)dx < iy,
a<d(x)<b,Vxe[r,T]}.

We consider Formulation (18) with Y =Q:

T
min / (cq(x)+ y(x))dx

q(x)>0

st y(x) > h(I(T)+/X(q(t)—d(t))dt),
VdeQ,Vxelr,T],

y(x)?—s([(’c)+/ (q(t)—d(t))dt),
VdeQ_,Vxe[r,T]. (20)

Our subsequent results depend on the sign of the
inventory position I(7) at time 7, and our proofs uti-
lize Lemmas 2 and 3 with Y = Q.. We demonstrate
that, under certain conditions, if there is an initial back-
log I(t) < 0, our optimal strategy orders an impulse at
time 7, and then applies a variant of the strategy in The-
orem 1. Alternatively, if there is an initial nonnegative
stock of inventory I(t) > 0, then, under certain condi-
tions, the optimal robust strategy is to order nothing
on the interval [, )(?T), to allow the stock to deplete,
where )(?T is Definition 1 evaluated with Y =Q_, and
then a variant of the strategy in Theorem 1 on the inter-
val [)(?T,T]. If the conditions are not met, then it is
optimal to order nothing for the entire interval [z, T].

The following theorem characterizes the optimal
robust ordering rate function g* for the () uncertainty
set, where 6 € #*[1, T] is the Dirac delta function (i.e.,
an impulse). Note that inventory control using impulse
functions is well established in the literature; see,
for example, Harrison et al. (1983) and Harrison and
Taksar (1983). This theorem is illustrated in Figure 2.

Theorem 2. Letting 6, = (b — u,)T + (u, —a)t)/(b —a)
and 0, = ((u, —a)T + (b — u,)7)/(b — a), we have the fol-
lowing:

1. If I(t) < 0 and ¢ < s(T — t), then the optimal robust
ordering rate function g*(x) =0 for x € (T —c/s, T and the
following strategy for x € [t,T —c/s]:

Ifu,+u,>a+b:
(sb+ha)/(s+h), xe(t,0,],
—I(1)0(x—1)+1b, x €(6;,6,],
(sa+hb)/(s+h), xe(6,T];

if oy + iy =a +b:

)= )+ {(sb +ha)/(s +h),

(sa+hb)/(s+h),

X e (T/ 91]/
X € (QllT]l
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Figure 2. (Color online) Left: The Optimal Ordering Strategy q*(f) for the u, + y;, > a + b Case of Theorem 2, Where c = 20,
s=2,h=1,T=400, t; =100, 7, =200, 13 =300, u, =8, u, =12, p =10, 0 =3, a =0 and b = 15. Right: The Cumulative Orders of
Theorem 2 Tracking Cumulative Demand, Which Is Generated Using Truncated Normal Random Variables with Mean i and
Standard Deviation ¢ as the Random (Nonnegative) Instantaneous Growth of Demand
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t
if u, +u, <a+b:
(sb+ha)/(s+h), xe(t,06,],
—I(t)o(x — 1)+ 44, x €(6,,0,],
(sa+hb)/(s+h), xe(6,,T].

IfI(t)<0and ¢ >s(T — 1), q*(x) =0 forall x € [t, T].

2. If I(1)>0, c<s(T—1), I(1) < (s D5 (T) + hD*(T))/
(s+h), and )(?’ <T —c/s, then the optimal robust order-
ing strategy is the following strategy, applied for x € [xs,
T —c/s], and zero otherwise:

Ifu,+u,>a+b:
(sb+ha)/(s+h), xe(t,64],
b, x€(6;,6,],
(sa+hb)/(s+h), xe€(6,,T];
if u, +up=a+b:
(sb+ha)/(s+h), xe(t,6,],
(sa+hb)/(s+h), xe(6,,T];
if U, +u, <a+b:
(sb+ha)/(s+h), xe(t,0,],
a, x€(6,,64],
(sa+hb)/(s+h), xe€(6,,T]

IfI(t)>0and c>s(T—1)or (t)> (s D (T)+hDy (T))/
(s+h) or X?T >T —c/s, then the optimal robust ordering
strategy q*(x)=0 for all xe[,T].

Proof. The proof is similar to that of Theorem 1, and is
presented in the appendix. O

Note that there are many similarities and differences
between the static and dynamic variants described in
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Theorems 1 and 2 that are worth discusssing. In both
cases, the ordering rates (when there is ordering) are
the same, either being a demand bound a or b, or one of
two weighted averages of thebounds (sb +ha)/(s + h) or
(sa+hb)/(s +h). Thevalue of u, + 11, — (a + b) also plays
the same role in both Theorems 1 and 2; this will not
be true for subsequent models where the uncertainty
set depends on the observed demand stream d. Simi-
larly, the partition of [7, T] in Theorem 2 is a straight-
forward generalization of the partition of [0, T] in Theo-
rem 1; again, this will not be true for subsequent models
that depend on d. The main difference between Theo-
rems 1 and 2 is the impact of the observed inventory
position I(7): if there is a backlog, an impulse order is
applied to immediately arrive at the case of zero initial
inventory (as in Theorem 1), and if there is nonnegative
stock, the optimal robust strategy is to order nothing
until a threshold time X?T, which allows the inventory
to deplete.

4.3. Sample-Path-Dependent Uncertainty Sets

In this section we present two approaches for defin-
ing uncertainty sets that incorporate past demand
information, as represented by the observed demand
stream d(1) for t € [0, 7]. In the first, in Section 4.3.1, we
assume that d € P_(Q), where the projection P (Q) is
the set of functions on [0, 7] that can be extended to a
function in Q; the set P, (Q) is formally defined in Equa-
tion (17). In the second, in Section 4.3.2, we assume
d ¢ P.(Q) and we find the nearest function d* € P (Q)
to d. If d* is not “too far” from d, we then define an
uncertainty set using d; if 4" is too far from d , we dis-
cuss a reparameterized uncertainty set based on d. In



Wagner: Robust Inventory Management: An Optimal Control Approach
Operations Research, 2018, vol. 66, no. 2, pp. 426-447, ©2017 INFORMS

both cases we assume that d € £%[0, 7], and that d is
nonnegative and bounded.

The literature that studies rolling-horizon robust
inventory models (e.g., Mamani et al. 2016, Solyali et al.
2016) implicitly assumes that d is consistent with (;
thus, our results in Section 4.3.1 can be interpreted as a
control-theoretic generalization of these results. How-
ever, the assumption of consistency is rather strong,
since many uncertainty sets are specifically designed
to be strict subsets of the support of the underlying
distributions (e.g., see Bandi and Bertsimas 2012 and
Ben-Tal et al. 2009), and this issue has, to the best of our
knowledge, not been studied. Therefore, the analysis in
Section 4.3.2 is new to the literature.

4.3.1. d Is Consistent with Q. In this subsection, we

R d
assume d € P (€2). We define an uncertainty set Q. that
consists of all functions d € #*[t, T] that extend d to a
function contained in the original set Q:

T T
Q‘f:{deSBZ[T,T]: yaT</ d(x)dx+/ d(x)dx
0 T
<be,a<d(x)<b,Vxe[T,T]}. (21)

Since d € P,(Q,), the set Q¢ is well defined and
nonempty. We consider Formulation (18) with Y = Q%:

T / (eqo) + v
s.t. y(x)>h(1(q;)+/ (Q(t)—d(t))dt),

VdeQ!, Vxe[r,T],
y(x) > —s (I(T) + / (D) - d(t))dt),

VdeQ!, Vxe[r,Tl.

The solution to this problem depends on the cumula-
tive demand observed in d up to time 7; we next define
the relevant metric.

Definition 2. D(7) = [ d(x)dx.

The following theorem characterizes the optimal
robust ordering rate function g for the Q¢ uncertainty
set, which assumes that d € P_(Q).

Theorem 3. Letting 0,=((b-pu,)T+D(t)—at)/(b-a),
0,=((ttp—a)T+bt—D(7))/(b—a), and W = ((u, + ;)T —
(T —7)(a +b))/2, we have the following:

1. If I(t) <0 and ¢ < s(T — 1), then the optimal robust
ordering rate function q*(x) =0 for x € (T —c/s, T] and the
following strategy for x € [t, T —c/s]:

IfD(t) < W:
(sb+ha)/(s+h), xe(t,6,],
—I(t)6(x—1)+14D, x€(6,,6,],
(sa+hb)/(s+h), xe(0,T];

IIGHTS LI N KO

439
if D(t) =W:
(sb+ha)/(s+h), xe(1,6,],
@b {(sa +hb)/(s+h), xe(0,,T];
sz)(T) >W:
(sb+ha)/(s+h), xe(t,6,],
—I(t)0(x — 1)+ 44, x€(6,,6,],
(sa+hb)/(s+h), xe(6,,T]

IfI(t)<0and c>s(T—1),q"(x)=0forall x e[z, T].
2. IfI(1)>0,c <s(T—1),I(t) < (sDH(T)+hDX (T))/
(s+h),and X?i < T —c/s, then the optimal robust ordering

strateqy is the following strategy, applied for x € | X?g, T-
c/s], and zero otherwise:

IfD(t) < W:
(sb+ha)/(s+h), xe(1,6,],
b, x€(6,,6,],
(sa+hb)/(s+h), xe(0,T];
if D(1) =W:
(sb+ha)/(s+h), xe(t,6,],
(sa+hb)/(s+h), xe(6,T]
sz)(T) >W:
(sb+ha)/(s+h), xe(t,6,],
a, X € (ézr é1],
(sa+hb)/(s+h), xe(0,,T].

IfI(t)>0and ¢ >s(T~1)or (1) > (sD(T)+hD™(T))/
(s+h)or )(?T >T —c/s, then the optimal robust ordering
strategy q*(x) =0 for all x € [7, T].

Proof. The proof is similar to that of Theorem 2, and is
presented in the appendix. O

We first identify similarities between Theorem 3 and
Theorems 1 and 2. The ordering rates are the same for
all three theorems, consisting of zero, the bounds a
and b, the weighted averages (sb + ha)/(s + h) and
(sa+hb)/(s +h), and impulse ordering. Next, we con-
trast the theorems; we have previously contrasted The-
orems 1 and 2, so we focus on the differences between
Theorems 3 and 2. The most pronounced difference
is the optimal partition of the interval [z, T]. In Theo-
rem 2, the partition consists of intervals whose break-
points are weighted averages of 7 and T, which only
depend on the value of y, + y, — (2 + ). In contrast, the
optimal partition of Theorem 3 depends on the realized
demand stream d. More prominently, when the results
in Theorems 2 and 3 are applied repeatedly for the
review epochs 7 € {7, 1,,...,}, the partition is static
under Theorem 2 and dynamic under Theorem 3, with
respect to the demand stream. In other words, the three
cases of Theorem 3 are not fixed for the reoptimization
ateach review epoch 7, as they depend on the updated
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observation of demand; in contrast, the cases under
Theorem 2, for a given set of 7;, are fixed since the par-
tition only depends on the value of u, + u, —(a +b),
which is known a priori.

4.3.2. d Is Not Consistent with Q. In this subsection,
we assume d ¢ P.(Q), which precludes the natural def-
inition Q¢ = Q N d that we analyzed in the previous
section. The literature on rolling-horizon approaches
to robust inventory management use variants of Qf,
which require the consistency of d with Q (e.g.,
Mamani et al. 2016 and Solyali et al. 2016 implic-
itly assume this consistency). Notably, if the observed
demand stream is inconsistent (i.e., QN d = @), then the
rolling-horizon strategies from the literature are infea-
sible, and no ordering strategy can be derived. Here,
we address this problem and propose two solution
approaches, depending on the degree of consistency
violation.

We first find the nearest function d* € P (Q) to d. In
particular, we solve the following optimization
problem:

d* = argmin||d —d||

st. deP (Q). (22)

Noting that Q is a closed convex subset of the Hilbert
space #°[0,T], we can apply the Hilbert Projection
Theorem (as presented in Luenberger 1969, p. 51):

Theorem 4. Let # be a Hilbert space and M a closed sub-
space of #. Corresponding to any vector x € #, there is a
unique vector m, € M such that ||x —m,|| < ||x — m|| for
all m € M.

Letting # = #°[0, 7], M =P (Q)and x = d, Theorem 4
implies that Problem (22) has a unique solution d* =m,,
but does not specify how to actually find the solution.
In the next lemma, we derive d*.

Lemmad4. 1. If fgmin{b,max{a,tf(x)}}dx € [u,T -
b(T — 1), u,T —a(T — )], then

d*(x) = min{b, max{a,d(x)}}, Vxe[0,1].

2. If [ min{b, max{a, d(x)}} dx < u, T —b(T — 1), then
d*(x) =min{b, min{b, max{a,d(x)}} +¢,}, Vxe[0,1],
where ¢, =min{c € R*: [ min{b, min{b, max{a,d(x)}}
+crdx > u,T-b(T—1)}.

3. If [ min{b, max{a, d(x)}} dx > u, T —a(T — 1), then
d*(x)=max{a, min{b, max{a,d(x)}} - ¢}, Yxel0,1],

where ¢, = min{c € R*: [ max{a, min{b, max{a,d(x)}}
—crdx <, T—a(T-1)}
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Proof of Lemma 4. We define the set X = {d € #*[0, ]:
a<d(x)<b, Vx€[0,7]}. We decompose the projec-
tion onto P,(Q) by first projecting d onto X, and then
projecting the result onto P (Q). This decomposition is
valid since the sets are nested, namely, £?[0,7] > X D
P (Q); see, for example, Berberian (1961, p. 76). Let

g = argminlld—dAH
st. deX;

it is straightforward to see that ¢*(x) = min{b, max{a,
d(x)}} for x €0, 7].

We next project ¢* onto P.(Q) = {d € #*[0,7]: L <
Jod(x)dx < U, a <dx) <b, Vx €[0,1]}, where
L=uyT-bT-1) and U = p,T — a(T — 7). We
have three cases to consider: (1) [y ¢*(x)dx € [L, U],
() Jy g'(x)dx <L, and (3) [y g"(x)dx > U. In Case (1),
d* = g*. In Case (2), we let

¢y, = minc
ceR*

s.t. / min{b, g"(x)+c}dx > L,
0

where ¢, is the minimum upward shift of g*(x), with
a truncation at the upper bound b, in order to bring
the total integral up to L. We claim that d*(x) =
min{b, g*(x) + ¢;} for x € [0, 7]; to prove this, we write
the projection as

min ] d-g,d-g"

de<?[0,t

s.t./d(t)dt—LI<0 a,
e (23)
—/ d(t)dt+L<0 :B,

0
d(H)-b<0, te[0,7] :y(t),

—d(t)+a<0, te[0,7]:06(t),

where the a, B, y(t), and 6(¢) are KKT multipliers. Prob-
lem (23) is a convex optimization problem; thus the
KKT conditions are sufficient. We let A={t: d*(t)=b}
and B={t: d"(t)=¢"(t)+c,}, and set =0, f=2c,, 6(t)=0
forall t€[0,7], and

_J2(e; = (b—g'(t)) teA,
V(t)_{o teB.

Clearly d* is feasible for Problem (23), and «,p,
0(t) = 0 for all t € [0, 7]; by the definition of d* and the
set A, we also conclude that y(t) > 0 for all ¢ € [0, 7]. By
the definition of c,, the constraint — f; d(t)dt + L <0 is
tight, and for t € A, the constraint d*(t) — b < 0 is tight;
this shows that complementary slackness holds for the
positive KKT multipliers.

Finally, we address the vanishing gradient. Since we
work in a Hilbert space, we utilize Fréchet derivatives
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(i.e., the derivative of a functional with respect to its
function argument; see Luenberger 1969). The Fréchet
derivative of (d — g*,d — "), with respect to the func-
tion d, is 2(d — g*), the Fréchet derivative of [ d(t)dt is
e(t)=1,Vt €0, 1], and the Fréchet derivative of d(f),
namely, evaluating the function d at its argument ¢, is
the Dirac delta function 6(x —t). The Hilbert space gra-
dient of the Lagrangian, for ¢ € [0, 7] and evaluated at
d* =min{b, g" + ¢;}, can be written (see Ulbrich 2009,
section 2.5.5) as

2d ()~ g (1) +(a—Ble(t)+ / 5(x—1)(y(x)—6(x)) dx
2 ()~ g (1) + (@ —B)e(t) + (D) - 5(1),

which evaluates to the zero function. Thus, d* = min{b,
<" + ¢, } is optimal. The analysis of Case (3) is similar:
we let

¢, = minc
ceR*

s.t. / max{a, g"(x)—c}dx <U,
0

where ¢, is the minimum downward shift of ¢*(x), with
a truncation at the lower bound 4, in order to bring
the total integral down to U; we conclude that d*(x) =
max{a, g"(x)—c,} forxe€[0,7]. O

Note that, since Lemma 4 provides a closed-form
solution for d*, its implementation in practice is very
efficient, in the spirit of the closed-form ordering func-
tions derived elsewhere in this paper. Once d" is deter-
mined, we have two alternatives, depending on how
close d* is to d, which is measured by ||d* - d||. Given a
threshold parameter 1, we say that d* is “close enough”
to d if ||d* —d| < 1. In this case, we define an uncer-
tainty set based on d*, since the violation of consis-
tency is relatively minor; the parameter n can be used
to control the conservatism of what is meant by “rel-
atively minor.” First, we utilize the uncertainty set (¢
in Equation (21) with d replaced with d*. Second, we
modify Definition 2 for d*, namely, D(t) = f{ d*(x) dx.
Finally, Theorem 3 can be applied with the new uncer-
tainty set Q7 and modified definition of D(7). Note
that, without this step, even very minor consistency
violations will result in the failure of the rolling-
horizon approach, as the optimization model at time ©
is infeasible.

If ||d* —d|| > n, this is indicative of a relatively major
violation of consistency, which suggests that the mod-
eling parameters (y,, ty,4,b) have been incorrectly
chosen, as the uncertainty set is not capturing the
observed demand. In this case, it is suggested to revisit
these parameters based on the information gleaned
from the observed demand stream. In particular, g =
(1/7) J d(t)dt is the estimated demand mean over the
interval [0, 7], and this can be used to update the prior
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belief on the true mean u, which in turn can be used
to update the parameters (u,, y;,4a,b); i.e., our model
assumes that a < p, < u < y, < b, which can be cor-
rected at this step.

5. Computational Studies

In this section we further explore our closed-form
strategies in contexts that are difficult to analyze theo-
retically. In Section 5.1 we compare our dynamic strate-
gies under various demand processes, including those
that relax the assumptions of our basic model (by intro-
ducing seasonality). In Section 5.2, we examine the
impact of different frequencies of review, and demon-
strate that more frequent review does not necessar-
ily lead to improved performance when comparing
between robust strategies, but more frequent review
does improve performance with respect to an omni-
scient ordering strategy. Finally, in Section 5.3 we study
the impact of the ratio ¢ /s and show that, even with rel-
atively large purchase costs, most demand is satisfied.

5.1. A Comparison of Dynamic Strategies

Recall that we have analyzed three variants of a
dynamic strategy. In Section 4.2 we considered a vari-
ant where at every review epoch 7, a new uncertainty
set is constructed that does not depend on past realiza-
tions of demand; we denote this strategy the simple (S)
strategy. In Section 4.3 we considered two strategies,
where at every review epoch 7, a new uncertainty set
is constructed that depends on the past demand real-
izations. In Section 4.3.1 we assumed that the past
demand was consistent with the original uncertainty
set Q, which simplifies the analysis; however, in our
implementation, we found that this assumption was
frequently violated, so we do not consider this strategy
in our computational experiments. In Section 4.3.2, we
relaxed this assumption, and used the Hilbert Projec-
tion Theorem to remedy the inconsistency. We select
this latter strategy for study and denote it the com-
plex (C) strategy.

In our experiments we set T =400, u=1, 0 =1/3,
h=1,s=2,¢=20,a=0.5, and b = 1.5, though our
results qualitatively hold for a wide range of parameter
values. We set p, = u, = 1, as this results in the best
differentiation between the S and C strategies, and best
performance for the C strategy, though we observe the
same pattern for u, < y < u,; this provides evidence
that, despite the limit of the strong law not holding
for finite T, good computational performance can be
obtained by setting p, = u, = p (which is consistent
with the recommendations of the literature that robust
uncertainty sets need not exactly coincide with prob-
abilistic behavior). We (initially) consider three review
epochs: 7, =100, 7, =200, and 75 = 300. We utilize two
approaches for generating the demand streams. In the
first, which is motivated by Brownian motion and
denoted A,, the instantaneous demand rate d(t) is an
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Table 1. Average Costs per Unit Time of the S and C
Dynamic Strategies for the A; and A, Generators of Demand

Average cost per unit time of ~ Average cost per unit time of

strategy S (Section 4.2) strategy C (Section 4.3.2)
A 23.05 23.29
A, 31.49 27.27

independent truncated normal random variable with
mean p and standard deviation o: d(f) = max{d,0},
where d ~ N(u, o). In the second approach to gener-
ate demand, denoted A,, we relax the assumptions of
our modeling to introduce seasonality into the demand
stream, and d(t) = y + M - sin(2ntt/T)), where M is a
random modulation that is normally distributed with
mean (/2 and standard deviation 1/6 (i.e., to ensure
d(t) > 0 with high probability; we truncate, similarly
to A, in the event that d(¢) < 0). In Table 1 we present
the average costs per unit time for the S and C strate-
gies over 10,000 simulation trials, for the A; and A,
generators of demand.

We see that the S strategy performs quite well, with
respect to the C strategy, when the demand stream
satisfies the assumptions of the analytical modeling
(i.e., A; is the demand generator). Thus, when cumu-
lative demand is expected to be well behaved, and in
general agreement with the properties of Brownian
motion (i.e., expected linear trend with no apparent
seasonality), the S strategy is (arguably) satisfactory
and there is no need to consider the C strategy. How-
ever, when the modeling assumptions are violated (i.e.,
A, is the demand generator), the C strategy is clearly
preferred, as it demonstrates a capability to react to
information contained in historical demand, resulting
in over 15% lower costs. Thus, when demand season-
ality is expected, we recommend utilizing the more

complex model of Section 4.3.2; in the next subsection,
we provide guidance in selecting the review frequency
as a function of the seasonality period.

We also point out that the projection operator was
indeed invoked in the implementation of the C strat-
egy, under both the A; and A, demand generators,
which provides further motivation for studying the
consistency of demand streams and uncertainty sets in
rolling-horizon strategies. However, this suggests that
there are two potential reasons for the improved per-
formance of C over S, under the A, generator: (1) the
usage of past demand information and (2) the pro-
jection of d onto P (Q). To tease out the effect of
each, we repeated the experiment with demand mod-
ified to always be consistent, and we obtained quali-
tatively similar improvements of C over S. Thus, we
are confident that most of the value comes from using
past demand information. However, the resolution of
demand inconsistency is required to attain this value
of past demand information, as inconsistent demand
renders the rolling-horizon approach infeasible.

We conclude this section by presenting, in Figure 3, a
visual representation of the S and C strategies under a
single sample path of A,: the C strategy exhibits better
performance because it is more responsive in reacting
to the seasonality, and is better able to track the cumu-
lative demand toward the end of the planning horizon.

5.2. A Study of the Review Frequency

In this subsection, we explore the impact of the fre-
quency of review epochs. As in the previous sub-
section, we consider the two generators of demand
A, and A,, as well as the same parameters. We con-
sider four frequencies of review: F, represents a single
review epoch 7 =T/2, F, represents the review epochs

Figure 3. (Color online) The S Strategy (Left) and the C Strategy (Right) for the Seasonality Generator of Demand A,, Where
c=20,s=2,h=1,T =400, 7, =100, 7, =200, 73 =300, yt, =8, 4, =12, u=10,0=3,a=0and b =15
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Table 2. Average Costs per Unit Time of the S and C Dynamic Strategies for the A; (Left)
and A, (Right) Generators of Demand, for the Different Review Frequencies F,, F,, and Fg

Average cost of Average cost of

Average cost of Average cost of

strategy S strategy C strategy S strategy C
(Section 4.2) (Section 4.3.2) (Section 4.2) (Section 4.3.2)
F, 32.94 (64.70%) 33.26 (66.30%) F, 58.34 (191.70%) 38.16 (90.80%)
F, 26.87 (34.35%) 27.21 (36.05%) F, 42.31 (111.55%) 31.01 (55.05%)
Fg 23.05 (15.25%) 23.30 (16.50%) Fg 31.50 (57.50%) 27.27 (36.35%)
Fie 21.43 (7.15%) 21.48 (7.40%) Fi, 25.35 (26.75%) 24.71 (23.55%)

Table 3. Percent of Average Cumulative Demand Produced by Strategy C for p =c/s

p:l p=5 p=10

p=20

p=30 p =50 p=75 p =100

1.0735 1.0640 1.0517

Q'(T)/E[D(T)]

1.0266

1.0014 0.9514 0.9090 0.9091

t€{T/4,2T/4,3T /4} (the same setup as in the previ-
ous subsection), Fg represents t € {iT/8:i€Z,1<i<7},
and F,, represents t € {iT/16: i € Z,1 < i < 15}. Our
performance metric is the same as in the previous sub-
section: the average cost per unit time over 10,000 simu-
lation trials. We also report, in parentheses, the percent
increase in expected cost with respect to the omniscient
strategy of ordering g = d for the entire horizon.

Our first results are presented in the left side of
Table 2 for the A; generator of demand; unsurpris-
ingly, the more frequent the review epochs, the lower
the average cost, for both the S and C strategies.
We also observe that the suboptimality, in percentage
terms, is attractive, especially for higher frequencies;
for instance, for F,, both the S and C strategies return
average costs only approximately 7% higher than the
omniscient (and unimplementable in practice) strategy
of ordering q(t) = d(¢) for all t € [0, T]. Finally, the per-
formances of the S and C strategies are comparable for
all review frequencies, and thus the simpler S strategy
is preferred.

However, under the A, generator of demand, we
observe qualitatively different results, which are pre-
sented in the right side of Table 2. The C strategy
significantly outperforms the S strategy for all review
frequencies. Furthermore, the largest gap between the
two costs is achieved with the lowest frequency, which
(not coincidentally) is half of the period of the sea-
sonality. Since demand is heaviest in the first half of
the period (from the sine function), this single review
epoch allows the C strategy to most effectively update
the uncertainty set to essentially reduce the expecta-
tion of demand in the second half of the period (i.e.,
to match the negative portion of the sine function).
However, when comparing with the omniscient strat-
egy q = d, the performances of both strategies improve
with increased review frequencies. Thus, if possible,
high review frequencies should be selected; however,
if this ability is limited under demand seasonality, the
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review frequency should be carefully selected to take
advantage of the periodicity.

5.3. The Impact of Purchase Cost

Our optimal ordering rate functions cease ordering at
a certain time that depends on the ratio p = ¢/s, in
order to minimize cost. Here we study the impact of
this ratio on the average percent of cumulative demand
filled, for the C strategy (results are comparable for the
S strategy). We consider p € {1,5,10,20,30,50,75,100}
and evaluate the ratio Q*(T)/E[D(T)], estimated over
1,000 simulation trials and presented in Table 3, where
the experimental setup is identical to those of Figures 2
and 3, except that ¢ = ps. We observe that small values
of p allow the robust strategy to satisfy all demand,
on average, and only large values of p (> 30) sacrifice
some demand to reduce cost. However, in the worst
case considered (p = 100), less than 10% of expected
demand is lost.

6. Conclusion

In this paper we have analyzed new models of inven-
tory management that uniquely lie at the intersec-
tion of robust optimization and optimal control theory.
Our uncertainty sets are motivated by strong laws of
large numbers for stochastic processes. We analyzed
one static and three dynamic models, where in all
cases we show that the closed-form optimal ordering
rate function orders one of four possible rates, namely,
the demand rate bounds a and b, and the weighted
averages (sb + ha)/(s + h) and (sa + hb)/(s + h). In
the dynamic problems, there is also the possibility of
an ordering impulse, to satisfy an observed backlog.
While the ordering rates come from the same set of four
values in all problems, the times at which to apply each
rate depend on the partition of the planning horizon,
which depend on the problem. In the static case, [0, T]
is partitioned based on the value of y, + y, — (a +b); in
our simplest dynamic problem, where the uncertainty



444

Wagner: Robust Inventory Management: An Optimal Control Approach
Operations Research, 2018, vol. 66, no. 2, pp. 426447, ©2017 INFORMS

set does not depend on the past realization of demand,
[7,T] is also partitioned based on u, + u, — (a + b).
When the uncertainty set depends on the past realiza-
tion of demand, the partition depends on the realiza-
tion, as well as the values of u,, u;, 4, and b. In our
most general dynamic model, we allow for the incon-
sistency of the realized demand with the structure of a
canonical uncertainty set, which we resolve using the
Hilbert Projection Theorem; in this case, the partition
depends on the projection and the values of u,, u,, a,
and b. Our models can also accommodate discounting:
if all costs are discounted at the same continuous rate,
our optimal robust ordering strategies do not change.
Computational results provide insight into when each
dynamic variant should be applied: (1) if demand is
well behaved, then any variant suffices, whereas (2) if
there is seasonality in demand, the third dynamic vari-
ant, with an appropriately selected review frequency,
exhibits the strongest performance by far.

We believe the ideas in this paper could be use-
ful for analyzing other new problems defined at the
intersection of robust optimization and optimal control
theory. In addition, we found the use of probabilistic
limit theorems as a guide in forming uncertainty sets to
be particularly useful. Similarly, CLT-style uncertainty
sets have recently received significant attention in a
variety of areas (e.g., auction design, information the-
ory, option pricing, queueing theory; see our literature
review), though only in finite dimensions. Combin-
ing robust optimization and optimal control ideas to
analyze these problems (and others), along with limit-
theorem inspired uncertainty sets, could lead to more
intuitive, and perhaps closed-form, solutions.
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Appendix A. Auxiliary Proofs

Proof of Lemma 2. We rearrange Formulation (18) and ap-
ply Expressions (19) to obtain a continuous linear program
with a new auxiliary variable z € #*[t, T|:

T
min / z(x)dx

s.t. z(x)—cq(x)—h‘/xq(t)dt>h(I(T)—DY(x)), Vxe([t,T],

z(x)—cq(x)+s/4 q(t)dt}s(Df(x)—I(T)), Vxe(r,T],

q(x)>0, Vxe[r,T]. (A1)

We first assume that ¢ <s(T—1), I(7) <(sDX(T)+hDX(T))/
(s+h),and xY < T—c/s; these are the necessary conditions for
positive ordering. Define A=T —c/s €[7, T] and for clarity we
let x = xY. Consider a feasible solution to Formulation (A.1)
characterized by f: q(t)dt = (sDY(x) + hDX(x))/(s + h) = I(7)
for x € [x, A] and g(x) = 0 otherwise.
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For x € [7, x), the auxiliary variable

2(x) = max{h(I(t) - D (x)),s(D; (x) ~ 1(v))}
=h(I(1) - D (x)),

since x < x, which implies that I(t) > (sDY(x) + hDY(x))/
(s + h). For x € [x,A], it is straightforward to see that the
first two constraints can both be tight, which implies that the
auxiliary variable

sDY(x) +hDY(x)

z(x):cq(x)+h( T

—I(T)) +h(I(7) = D; (x)).

Finally, for x € (A, T], only the second constraint can be tight,
since (sDY(x) + hDY(x))/(s + h) > (sDX(A) + hDY(A))/(s + h),
which implies

s+h

s S(Dz(x) _ sDI(4)+hDY (A)).

The objective function value of (A.1) is

n [ X(I(T)—Df(x»dxw(%—;@m —I(T))
A ~Y
iy T
) :
+ s/ (Df(x) - —SDI(AS) I ZDHA) ) dx
A
- [ 1)~ DIy ax
+h/ (%—Df(x))dx
XT
+s/ DX (x)dx - cI(7). (A2)
A

The dual of Problem (A.1) is

max {/ (h(I(t) = DX(x))u(x) +s(DX(x) —I(T))v(x))dx}
s.t. u(x)+o(x)=1, Vxe[r,T],
T

T
—cu(x)—h/ u(t)dt—cv(x)+s/ v(t)dt <0,

Vxelr,T],

u(x), v(x) =20, Vxelr,T],

which, by substituting out the u variable, can be written as

T
max {/ (sDY(x) + hDX(x) — (s + B)I(1))ov(x) dx

T

T j—
s.t./ v(t)dtsw

v [ ‘() -Dr (x))dx}

. P Vxelr,T],
0<v(x)<1, Vxe[rT].

Next, consider the dual feasible solution

0, x €[z, x),
v(t)={h/(s+h), xe[x, Al
1, x€(A,T],
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which has a dual objective value of
A
% [ (sDY(x) + kDX (x) - (s + h)I(7)) dx
T
+ / (sDY(x)+hDX(x) - (s + h)I(1)) dx
A .
+h [ (I(t)-DX(x))dx
[A T
+h [ U@ - DX @+ [ 10~ DI dx
X A

=i [ 1)~ DIw)ax
" /A ( sDY(x)+hDX(x)

_nNY

T
+s / DY(x)dx - cI(7). (A.3)
A

Therefore, the primal value (A.2) and dual value (A.3) are
equal, and both solutions are optimal. This concludes the
proof of part (1a) of the lemma.

If )(;f > A, then the proof is modified to exclude the middle
case of [x,A], which implies that g*(x) =0 for all x € [7,T],
which proves part (1b). If ¢ > s(T — 1), then only the analysis
of the (A, T] case is appropriate with A = 7;if I(t) > (sDY(T) +
hDX(T))/(s + h), then only the analysis of the [, x] case is
appropriate with y =T. These last observations prove part (2)
of the lemma. O

Proof of Lemma 3. The proof is very similar to that of
Lemma 2 and we only point out the differences. First, the
x € [1, xT) analysis is omitted since the x) parameter is only
defined for positive inventory positions. Second, the analysis
of the x € [xY, A] case is applicable, except with x¥ = 7. The
rest of the proof is identical. O

Proof of Theorem 2. We have two cases to consider: (A) I(7)
<0and (B) I(7) > 0. We begin with Case A, where Lemma 3
is applicable with Y = Q, and we focus on case (1a) of the
lemma (since otherwise it is optimal to order zero): at opti-
mality, for x € [1, T —c/s],

t _ sDP"(x) +hD7 (x)
/T q(Hdt= s+h B

I(r).  (A4)

Since D?T(T) = D?T(T) =0, to satisfy Equation (A.4), we
require that there is a positive ordering impulse at time
7: —I(7)6(x — 7). This impulse order fills the backlogged in-
ventory position I(7) < 0.

Next, given the structure of QO , we evaluate D? “(x) and
D?’ (x), from Equations (19), for Y =Q:

Q _ . *
D2 () = uin / d(t) dt

T

=max{(x —1)a, y,(T-1)-(T-x)b}, Vxel[r,T]
and
D (x) =%§[d(t)dt
=min{(x —1)b, y,(T—1) - (T —x)a}, Vxe[r,T]
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We next determine the ordering strategy for x € (7, T]. Equa-
tion (A.4) can be rewritten as

/ g*(t)dt = (s min{(x = 7)b, u,(T = 7) = (T — x)a}
’ +hmax{(x - 7)a, u,(T —7)— (T — x)b})
(s+h) = 1(7).

The first term of the max operator dominates when
((b—p,)T + D(t) —at)/(b—a) > x and the first term of the
min operator dominates when x < (g, —a)T + bt — D(1))/
(b—a). The former threshold is strictly less than the lat-
ter iff D(t) < (y, +u,)T/2 — (T —1)(a+b)/2. This implies
that we have three cases to consider, which determine
the relative order and distinctness of the preceding break-
points: (i) D(1) < (Mo +1p)T/2 = (T—=1)(a+b)/2, (ii) D(1) =
(o + )T /2= (T = 1)(a+b)/2, and (iii) D(7) > (1, + ) T/2 -
(T —1)(a+b)/2.In each case, we have a partition of [7, T] that
depends on the value of D(7); the order and distinctness of
the breakpoints depend on the case. We may also omit the
inventory position I(7) since itis negated by the impulse order
discussed above. In case (i) we have that

sb+ha x— sb+ha

s+h T
b—u,)T -

XE(T,( )T+, u)T]/

b—-a
byt h(p,(T-7)-bT)—stb

’

T, _ s+h
/TLI(t)dt— xe((b—yﬂ)T-F(‘ua—ﬂ)T (ub—a)T+(b—ub)T]

b-a ! b-a
sa+hb sa+hb su,+hy,
( s+h ) _( s+h )T+( s+h (T=),
xe((#b_u)T+(h_Hb)T, )
b-a

which, taking derivatives with respect to x and combining
with the impulse order at time x = 7, implies

q'(x) ==I(1)6(x — 1)

sb+ha/ re T,(b—un)T+(ya—a)T )
s+h b—a
Ay re (b_“a)T"'(,ua_u)T,(“b_a)T-"(b_“b)T )
b—a b—a
su+hb, xe((‘ub_a)T+(b_“b)T,T],
s+h b-a
(A.5)

In case (iii), we have In case (iii), we have

/TX q (t)dt

sb+ha ‘e sb+ha .
s+h s+h |’
XE(T,(#b_a)T+(b_#b)T],
b-a
—h e
px ta+s(u,(T—1) aT)’
_ s+h
- (pp=—a)T+(b— )t (b—p,)T+(y,—a)t
X€ , ,
b-a b-a
sa+hb sa+hb sy, +hy,
( s+h ) _( s+h )T+( s+h (=),
xe((b_l‘a)T‘*'(#a_ﬂ)T,T],
b-a
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which implies

q"(x)=-I(t)6(x-7)
sb+ha E(T ([.lh—ﬂ)T+(b—[.lb)T]

, X

s+h b—a
da e (ub—a)T+(b—yb)T’(b—yu)T+(ya—u)T ’
b—a b—a
sa+hb (b—p)T+(u,—a)T
s+h ' ( b-a T (A-6)

In case (ii), the middle interval disappears since the thresh-

olds (b - )T + (1, ~a)7)/(b —a) and ((tt, ~ )T+ (b - p,)7)/
(b —a) are equal.

In Case B we apply Lemma 2 with Y = Q_. In particu-
lar, there is onlg nonzero ordering when ¢ < s(T — 1), I(t) <
(sD2*(T)+hD:*(T))/(s +h), and xy* < T — ¢/s; this nonzero
ordering only occurs on the interval x € [ )(?T ,T—c/s] and the
structure is identical to that derived above for Case A, with
the impulse order omitted. O

Proof of Theorem 3. The proof follows the same logic as the
proof of Theorem 2; the differences are mainly technical. We
have two cases to consider: (A) I(1) <0 and (B) I(7) > 0. We
begin with Case A, where Lemma 3 is applicable with Y =Q¢,
and we focus on case (1a) of the lemma (since otherwise it is
optimal to order zero): at optimality, for x € [t,T —c/s],

x —Q‘i Qi
/q*(t)dt:SDT WHDTO) gy Az

s+h

Since DS’ i(’[) = DY g(’[) =0, to satisfy Equation (A.7), we
require that there is a positive ordering impulse at time
T: —I(7)6(x — 7). This impulse order fills the backlogged
inventory position I(7) < 0. )

Next, given the structure of Q‘f, we evaluate D?z (x) and

D?i (x), from Equations (19), for Y = Q:

D (x)=min [
D."(x) =min d(t)dt

deq?
=max{(x —1)a, u,T - (T —x)b - D(1)}, Vx e[, T]

and
D?g(x) = ma)g/ d(t)dt
deq? J1
=min{(x — )b, 4, T — (T - x)a— D(1)}, Vx €[z, T].

We next determine the ordering strategy for x € (7, T]. Equa-
tion (A.7) can be rewritten as

/X q'(t)dt = (smin{(x — )b, u, T — (T — x)a — D(7)}
‘ +hmax{(x—r)a,,u,,T—(T—x)b—D(T)})
(s+h)t=1I(7).

The first term of the max operator dominates when
((b—yu)T+D(T)—a’c)/(b —a)>x and the first term of the min
operator dominates when x < ((y, —a)T + bt — D(1))/(b -
a). The former threshold is strictly less than the latter iff
D(t) < (u, + t)T/2=(T—=1)(a+b)/2. This implies that we
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have three cases to consider, which determine the relative
order and distinctness of the preceding breakpoints: (i) D(1)<
(1o + )T /2~ (T =)@ +b)/2, (if) D() = (tt, + 1, T /2~ (T~ 1)-
(a+b)/2, and (iii) D(t)> (g + )T /2= (T —1)(a+b)/2. In each
case, we have a partition of [7,T] that depends on the value
of D(7); the order and distinctness of the breakpoints depend
on the case. We may also omit the inventory position I(7) since
it is negated by the impulse order discussed above. In case (i)
we have that

q(t)dt
sb+ha ‘e sb+ha
s+h s+h |"
( (b—yu)T+D(T)—aT]
x€|T,
b-a
bx+h(PaT_D(T)_bT)_STb,
_ S+ A
- . (b-p)T+D(1)—at (u,—a)T+bt—-D(7)
b-a ’ b-a
sa+hb sa+hb sy, +hy, .
( s+h )x—( s+h )T+( s+h T-D(x),
e((ub_a)T+bT_D(T),T].
b—-a

Taking derivatives with respect to x and combining with
the impulse order at time x = 7, implies

q"(x)=—I(1)o(x 1)
sb+ha N (T (b—‘U,Z)T-FD(T)—KZT]

s+h b—a
1y, re (b—[.la)T+D(T)—ﬂT/([.lb—ﬂ)T+bT—D("() ,
b—a b—a
sa+hb (tp—a)T+bt—D(1)
s+h ( b-a 2 (A8)

Note that the first and third intervals, (t, (b — u,)T + D(1) —
at)/(b—a)] and (((y, —a)T + bt - D(:[))/(b —a), T], respec-
tively, have nonnegative length since d € P_(Q) implies that

1, T=b(T-7)<D(7) < 4, T—a(T - 1);

these two inequalities can be rearranged to show the intervals
are well defined. The middle interval is well defined because
we are in case (i).

In case (iii), a similar analysis gives In case (iii), a similar
analysis gives

q"(x) =—I(1)o(x - 7)
sb+ha (T (yh—a)T+bT—D(T)]

s+h b—a

1o xe((yb—a)T+bT—D(T),ds(b—yu)T+D(T)—uT ,
b-a b-a
sa+hb (b—u,)T+D(1)-at
h xe( b=a ,T]. (A9)

In case (ii), the }niddle interval disappears since the t}}resh—
olds ((b—u,)T+D(t)—at)/(b—a)and ((u, —a)T+bt—D(1))/
(b —a) are equal.
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In Case B we apply Lemma 2 with Y = Q‘i. In particu-
lar, t}}ere is onlyj nonzero ordering when ¢ < s(T — 1), I(7) <
(sDZ(T) + hD*(T))/(s + h), and x* < T — ¢/s; this nonzero
ordering only occurs on the interval x € [ )(?g ,T—c/s]and the
structure is identical to that derived above for Case A, with
the impulse order omitted. O
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