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Abstract

In this paper we consider a location-optimization problem where the classical uncapacitated facility location model is recast in a

stochastic environment with several risk factors that make demand at each customer site probabilistic and correlated with demands

at the other customer sites. Our primary contribution is to introduce a new solution methodology that adopts the mean–variance

approach, borrowed from the finance literature, to optimize the “Value-at-Risk” (VaR) measure in a location problem. Specifically,

the objective of locating the facilities is to maximize the lower limit of future earnings based on a stated confidence level. We

derive a nonlinear integer program whose solution gives the optimal locations for the p facilities under the new objective. We

design a branch-and-bound algorithm that utilizes a second-order cone program (SOCP) solver as a subroutine. We also provide

computational results that show excellent solution times on small to medium sized problems.

q 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Classical uncapacitated facility location and p-median location models (e.g., Hakimi [1], Erlenkotter [2], Körkel [3];

see Cornuejols et al. [4] for a review) study the problem of locating a set of facilities to maximize the earnings for

serving a set of markets with known demands. Because the demands in markets tend to change in relation to updated

economic factors, in reality, at the time that an allocation decision is made, the future demands might not be known,

except for their probability distributions. In this study, we consider a situation where a firm wishes to select facility

locations that will serve a set of market points with uncertain and correlated demands. When facing uncertain demands,

the objective function of classical p-median models becomes a first-order moment approximation (i.e., expected value).

Following the mean–variance approach in a finance application (Markowitz et al. [5]), we use both first- and second-

order moments to analyze the distribution of future earnings. Therefore, rather than using a risk-neutral objective

that simply maximizes the expected earnings, our model is able to manage the monetary risk in a p-median problem

by optimizing the “Value-at-Risk” (VaR) measure of future earnings. More precisely, given that the earnings remain

probabilistic at the time the allocation decision is made, our model aims to maximize the lower limit of future earnings

based on a confidence level required by the decision maker. The confidence level is defined as the probability that a

lower limit can be met or surpassed by future earnings.

∗ Corresponding author. Tel.: +1 510 885 3531; fax: +1 510 885 4851.

E-mail addresses: michael.wagner@csueastbay.edu (M.R. Wagner), joy_bhadury@uncg.edu (J. Bhadury), steve.peng@csueastbay.edu (S. Peng).

0305-0548/$ - see front matter q 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cor.2007.12.008



Author's personal copy

M.R. Wagner et al. / Computers & Operations Research 36 (2009) 1002–1011 1003

Making strategic decisions, such as facility location, may require a firm to commit resources in a manner that is

costly to reverse. As a result, associated risk becomes an important concern when uncertainty is significant (Doherty

[6]). The seminal work on using a mean–variance approach to optimize portfolios (Markowitz [7]), for which Harry

Markowitz received the 1990 Nobel Prize in Economics, has inspired much research toward the systematic treatment

of two often-conflicting objectives: profit versus risk (see Steinbach [8] for a review). Analogous to using a financial

portfolio to control risk, our intention is to use the allocation decision to influence the mean and standard deviation of

future earnings. Nevertheless, conventional mean–variance models usually rely on an artificially defined utility function

to describe the decision maker’s preference under uncertainty; thus, the typical objective function is to maximize the

expected utility (see Schoemaker [9] for a review), which, in a facility location model, would imply expected future

earnings. Although it is theoretically sound to explain the behavior of individuals facing choices under risk, empirical

support for the expected utility rationale has not been strong (see Tversky et al. [10] for a review). Even more severe

limitations apply to using the utility function to explain the behavior at the organizational level. The mechanism

through which utility is aggregated into a collective function for the organization has been open to wide speculation.

The impossibility theorem (Arrow [11], Mas-Collell et al. [12], Chapter 21) even suggested that such a function might

never be developed.

To avoid the pitfalls related to expected utility objective, in this paper we describe the decision maker’s objective

with an explicit measure named Value-at-Risk (VaR). VaR is defined as the lower limit of future earnings at a given

confidence level chosen by the decision maker. In a p-median setting, we show that optimizing the VaR is equivalent to

solving a bi-objective location problem (Daskin [13], Chapter 8) in which expected profit needs to be traded off with

the standard deviation of future earnings. VaR has become one of the most important measures for managing risk in the

financial industry (e.g., RiskMetrics [14]) as well as non-financial firms (Bodnar et al. [15]). The popularity of VaR is

primarily related to a simple and easily understood representation of risk and value. For a comprehensive introduction

to risk management and applications using VaR, we refer the reader to Jorion [16,17] and Duffie and Pan [18].

Quite naturally, different stochastic location models require different risk measures for their objective functions. Our

model considers the uncapacitated facility location setting. Such problems with stochastic weights were first introduced

by Frank [19,20], which consider only the single facility allocation decision. As a result, the risk measure adopted in

this paper is associated with the uncertainty of overall future earnings. In stochastic facility location models such as

covering and center problems, the risk measures are usually associated with the worst service quality among demand

points. For example, in a center problem with probabilistic weights, Berman et al. [21] propose a model that minimizes

the maximum weighted distance between a facility and demand points exceeding a given target. Snyder and Daskin

[22] propose a location model that considers the situation where the reliability of each facility is stochastic and the

objective function needs to consider the potential failure of certain facilities. When facility capacity is limited, location

problems with stochastic demand and congestion (LPSDC) usually incorporate Queuing Theory to model the timing

and actual demand generated by each location, as well as a possible loss of demand due to that facility’s inability to

provide adequate service (Berman et al. [23]). An extensive review of other capacitated stochastic location models

can be found in Berman and Krass [24]. The assumption of uncapacitated facility is appropriate when demand can be

served without specialized servers and when the replenishment of supply is frequent (e.g., a shopping center or grocery

store).

Generally, there are two major complexities when solving median problems with correlated demands, such as the

one considered in this paper. The first is associated with calculating correlation coefficients with a large number of

demand points. In the recent finance literature, most approaches to calculating VaR assume a joint normal distribution

of the underlying risk factors instead of calculating the tedious joint variance of demands from exhaustive historical

data (Simons [25], Stambaugh [26], Pritsker [27], Alexander and Baptista [28]). In this paper, we replace the traditional

variance–covariance matrix approach with one that involves systematic and nonsystematic risk factors.

The second complexity is attributed to the nonlinear nature of optimizing a quadratic function related to variance.

Usually, simplification of demand correlation is necessary for the multi-facility version of location problems. For

example, in their model of optimizing the location of p distribution centers (DCs), Shen et al. [29] assume that the

random demands among nodes are independent and the variance of demand at each node is in a constant proportion

of the mean of demand. However, in our paper we utilize concepts from nonlinear programming to exactly solve our

combinatorial model. In particular, we formulate the p-median problem under the VaR objective as a nonlinear integer

program. To solve this optimization problem, we design a branch-and-bound algorithm that utilizes a second-order

cone program (SOCP) (e.g., see Alizadeh and Goldfarb [30]) solver as a subroutine. SOCPs are a generalization of
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linear programming that are solvable in polynomial time by interior point methods (e.g., see Renegar [31]). Thus, our

model allows a decision maker, who is interested in solving a p-median model, a feasible way to manage the profit

uncertainty when the demands at the nodes are stochastic and correlated.

Outline: The paper is organized as follows. Section 2 introduces notation, models random demand with a set of

risk factors, and describes the objective function. In Section 3, we summarize SOCPs and show how they can be used

to solve the p-median problem under the VaR objective. Section 4 presents the computational results to evaluate the

performance of our algorithm. Conclusions and recommendations are addressed in Section 5.

2. Model formulation

In keeping with the p-median problem, we assume that the market is given by a graph G = (N, A), where

N = {1, 2, . . . , n} represents the set of nodes (the demand points) and A = (i, j) represents the set of arcs with

i, j ∈ N . The decision maker seeks to locate p (where p n) facilities and these locations are to be chosen from the

entire set of nodes N.

2.1. Modeling stochastic demands with risk factors

We model the demand correlations by using a set of risk factors. Let Di be the random demand originating from

node i = 1, 2, . . . , n. We assume that Di is represented by a mean given by Di plus a random component Di , where

E[Di] = 0:

Di =Di + Di . (1)

In order to understand what determines the composition of Di , we now introduce the concept of systematic and

nonsystematic risk factors. A systematic risk factor is one that affects the demands of a large number of nodes. To

understand this better, let us assume that the firm in question is a grocery firm that wishes to locate p DCs to serve

the customers in G (see Table 1). At the time the DC allocation decision needs to be made, the grocery chain faces

several uncertainties that may affect the demands on a large scale. For example, one uncertain factor could be the

chain’s ongoing plan to cooperate with a coffee chain to provide express service for customers. If this plan goes well,

it may increase node demands, depending on local demographic characteristics. A second factor could be the chain’s

decision to expand product lines to include certain domestic appliances in some stores. A third possible factor could

be the potential movement of competing grocery chains. For example, competitors might enter or exit certain regions

in the future and affect the demands in those regions accordingly. A fourth factor could be about general economic

conditions, such as gross domestic productivity (GDP) and the unemployment rate. Because systematic risk factors

often have market-wide effects, they are also called market risk in the financial literature. In contrast, an unsystematic

risk factor could be one that affects only one node. For instance, local demand may be affected by local zoning by-laws

and population changes. Because nonsystematic risk factors represent the independent part of uncertainty of each node,

it often has a much smaller influence on the demand uncertainty than the systematic ones.

Table 1

Systematic and nonsystematic risk factors of demands (a grocery chain example)

Type Risk factor (Vi or Sk) Influence Data needed for estimation of vi or sk
i

Systematic Benefit from strategic alliance with a

coffee chain

Demography segmented by age, gen-

der, etc.

Linear combination of demographic data at

each node

Systematic Plan to expand product lines in certain

stores

Market position and shopping traffic

at participating stores

Conduct market survey and consumer be-

havior analysis

Systematic Impact of competitor’s movement Geographic regions where competi-

tors plan to enter/exit

Competitors’ potential sites and market

strategy at each area

Systematic U.S./Canadian economy in the future Demography segmented by job type

and household income

GDP, unemployment rate, inflation, demo-

graphic data at each node

Nonsystematic Local zoning or population growth Number of local residents Historical data; local manager’s assessment
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Assume that there are K (K = 4 in Table 1) systematic risk factors that apply to each demand node. Each systematic

risk factor is denoted by Sk , k = 1, . . . , K . In addition, we let Vi represent the nonsystematic risk factor at node i.

To make the model tractable, for each node i, we assume that each risk factor Vi or Sk is a normal random variable.

For each risk factor, the coefficient vi or sk
i represents the weight of random variable Vi or Sk , respectively, in the

demand Di . Once again, without loss of generality, we assume that Vi and Sk have zero mean and unit variance (i.e.

var(Vi) = var(Sk) = 1). For the systematic risk factor Sk , we allow the coefficient sk
i to be a real number because

the demands at the various nodes may have positive or negative correlations among them. Similarly, for the random

variable Vi , we let the coefficient vi be any real number. As a result, the distribution functions of Di can be completely

described by the weights vi and s1
i , . . . , sK

i . In practice, the estimation of the risk factor weights vi and s1
i , . . . , sK

i is

achieved by using combinations of demographic data and market intelligence. Table 1 summarizes the characteristics

of each risk factor, the scope of each factor’s influence, and the relevant information for estimating vi and s1
i , . . . , sK

i .

Since we have assumed that the risk factors Vi and Sk are normally distributed (with zero mean and unit variance)

random variables, this permits demand value at node i to be negative. In order to assure positive demand, we require

truncation on the lower tail. With the definitions and examples above, we have implicitly defined Di . We next explicitly

give a functional form for Di , which we accomplish by restating Eq. (1), which represents demand Di at node i, as the

following nonnegative random variable:

Di =Di + Di =Di +max

(

−Di, viVi +
K
∑

k=1

sk
i Sk

)

. (2)

However, in an application under a similar mean–standard deviation framework, Carr and Lovejoy [32] assume that

all demands are normally distributed and demonstrate that explicitly dealing with the lower truncation complicates the

analysis but with little gain in accuracy or insight. This is further corroborated in Petruzzi and Dada [33], who remark

that if Di is large relative to the variance of Di , unbounded probability distributions such as the normal distribution

provide adequate approximations. Therefore, to keep our model tractable and to focus on exploring managerial insight,

in the rest of the paper we will adopt the same assumption made by Carr and Lovejoy [32]. In other words, we will

assume that the effect of truncating the demand distribution below zero is sufficiently small and hence Eq. (2) will be

approximated as Di and a weighted sum of risk factors Vi and Sk:

Di ≈ Di + viVi +
K
∑

k=1

sk
i Sk . (3)

While the transition from Eq. (2) to (3) might seem drastic (since we still implicitly assume Di!0), we argue

that a reliable estimation of the risk factor weights vi and sk from real data will give a model that results in realistic

(nonnegative) demands. In any case, any negative demands can easily be rounded up to zero in an actual implementation.

The covariance between the demands of two nodes can therefore be derived as follows:

cov(Di, Dj )=
K
∑

k=1

sk
i sk

j . (4)

2.2. Formulation of the objective function and the constraints

Having developed the risk-factor based approach for modeling stochastic demands, we now turn our attention to

the formulation of the objective function and the constraints. All matrices and vectors will appear in boldface type.

Assume that the decision maker needs to locate p facilities and the fixed cost of establishing a facility at node i is a

constant fi . We further assume there is no capacity constraint on the demand served by a facility. Once the p facilities

have been located, each of the n nodes will get its shipments from the least costly facility. We let lij denote the smallest

cost of transporting a unit good between any two nodes i, j ∈ N . For example, lij can be defined as the shortest path

between nodes i and j, which can be easily calculated using Dijkstra’s algorithm. We let ri denote the unit sale price at

node i. Given such an allocation decision, in accordance with the standard notation of the p-median problem, we let yj ,

j = 1, . . . , m be a binary variable that is defined as follows: yj = 1 if a facility is located at site j and yj = 0 otherwise.
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Let y be a vector of the yj variables. Similarly, xij is defined as follows: xij = 1 if node i is served by a facility at site j

and xij = 0 otherwise.

We use an n× n matrix X= {xij } as an allocation matrix to represent an allocation decision of p facilities. One can

see that an allocation matrix X, with entries of zeros and ones, shall have exactly p nonzero columns and have one

nonzero entry in each row. Hence, if we let Pi(X) represent the profit contributed by node i under this given allocation

decision, assuming a facility is located at node i, then

Pi(X)=−fi +
n
∑

j=1

Dj (ri − lij )xji . (5)

Finally, incorporating the y decisions, we let P(X, y) denote the sum of profits from all nodes and it can be seen that

P(X, y)=−
n
∑

i=1

fiyi +
n
∑

i=1

n
∑

j=1

[

Dj (ri − lij )+

(

vjVj +
K
∑

k=1

sk
j Sk

)

(ri − lij )

]

xji . (6)

Given that the demand Di is approximated by a normal random variable as in Eq. (4), P(X, y) can then be rep-

resented as a multivariate normal random variable. The mean and standard deviation of the overall profit can be

computed as

E[P(X, y)] = −
n
∑

i=1

fiyi +
n
∑

i=1

n
∑

j=1

Dj (ri − lij )xji (7)

and

STD[P(X, y)] =

√

√

√

√

√

n
∑

i=1

n
∑

j=1

(

vj (ri − lij )xji

)2 +
K
∑

k=1





n
∑

i=1

n
∑

j=1

sk
j (ri − lij )xji





2

. (8)

We now discuss the VaR approach, where the objective is to maximize the lower limit of future earnings based on

a stated confidence level. Fixing the variables xij and yj for all i, j , the VaR objective is to find the largest value of p

such that P[P p] e, for some given confidence level e:

p
∗ =max p

s.t. P[P p] e. (9)

Since the profit P is a normal random variable with mean E[P] and standard deviation STD[P], we can perform the

following analysis, where Z is a standard normal random variable (zero mean, unit variance) and U(·) is the distribution

function of a standard normal random variable:

P[P p] e⇔ P

[

Z 
p− E[P]
STD[P]

]

 e

⇔U

(

p− E[P]
STD[P]

)

 e

⇔
p− E[P]
STD[P]

 U
−1(e) (since U(·) is monotonously increasing)

⇔ p E[P] + U
−1(e)STD[P].

Therefore, p∗=E[P]+U
−1(e)STD[P]. Our VaR p-median problem is concerned with the location of facilities and

allocations of demands in order to maximize the value of p
∗. Consequently, our VaR p-median problem is formulated
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as follows:

max
X,y

E[P(X, y)] + U
−1(e)STD[P(X, y)]

s.t.

n
∑

j=1

xij = 1, ∀i ∈ N ,

n
∑

j=1

yj = p,

xij  yj , ∀i, j ,

xij , yj ∈ {0, 1}, ∀i, j . (10)

For the remainder of the paper, we assume that e 
1
2 so that U

−1(e) 0, a necessary requirement for our solution

approach. If e 
1
2 and the integer constraints are relaxed, Problem 10 is a convex optimization problem. If e > 1

2 , the

convexity is lost.

3. A solution procedure

3.1. Second-order cone programs

If z= (z1, . . . , zd) is a d-dimensional vector of variables, the following mathematical program is an SOCP:

min
z

f ′z

s.t. ‖Aiz+ bi‖ c′iz+ di, i ∈ I , (11)

where f , bi , ci are real-valued vectors, di is a real number, and Ai are real-valued matrices of appropriate dimensions.

The norm in the constraints is the standard Euclidean norm: ‖x‖ =
√

x′x. A property of SOCPs that is useful for

our analysis is that they can be solved efficiently (both theoretically and practically) via interior point algorithms; see

Renegar [31] for an introduction to appropriate algorithms.

3.2. Application of SOCPs to the VaR p-median problem

Next, we show how a SOCP can be used in computing a solution to our VaR p-median problem (10). We let the

variable vector z= (z1, . . . , zd) contain all variables yj and xij (i.e., d = n2 + n). In particular,

z= (y1, . . . , yn, x11, . . . , x1n, x21, . . . , x2n, x31, . . . , xnn);

we denote this correspondence concisely as z= (y, X). The expected profit can be written as

E[P(X, y)] = m
′z, (12)

where m is a vector whose elements are derived from Eq. (7). Likewise, the standard deviation of the profit can be

written as

STD[P(X, y)] =
√

z′Rz, (13)

where R is the covariance matrix derived from Eq. (8). More specifically, using the shorthand z = (y, X), note that

the profit function P can be written as P(z) =
∑d

i=1Wizi , where the Wi are random variables that can be identified

from Eq. (6). Consequently, Rij = cov(Wi, Wj ) and Rii = var(Wi). Detailed derivations of m and R are given in

Section 4. Let

P =







z

∣

∣

∣

∣

∣

∣

z= (y, X),

n
∑

j=1

xij = 1,∀i ∈ N,

n
∑

j=1

yj = p, xij  yj ,∀i, j ∈ N







(14)
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denote the feasible region of a linear programming relaxation of the classic p-median problem. Therefore, the VaR

p-median problem (10) can be written as

max
z

m
′z+ U

−1(e)
√

z′Rz

s.t. z ∈ P ,

z ∈ {0, 1}n
2+n. (15)

A relaxation of formulation (15) can be obtained by removing the binary variable condition:

max
z

m
′z+ U

−1(e)
√

z′Rz

s.t. z ∈ P . (16)

By introducing an extra variable w, we see that the relaxation (16) can be rewritten as

max w

s.t.
√

z′Rz 
m
′z− w

−U
−1(e)

,

z ∈ P , (17)

an SOCP, since
√

z′Rz=‖R1/2z‖, assuming the square root of the covariance matrix exists. Note that, by definition, the

covariance matrix R is positive semidefinite (i.e., for any z, z′Rz=var(P(z))!0). Since R is a symmetric matrix, it has

real eigenvalues ki , i = 1, . . . , d, and d mutually orthogonal real (column) eigenvectors ei , i = 1, . . . , d. Furthermore,

we can write R=
∑d

i=1kieie
′
i . We show the existence of the square root matrix by writing R

1/2=
∑d

i=1

√
kieie

′
i . Finally,

note that if e > 1
2 , the inequality of the first constraint of formulation (17) would have been inverted and the problem

would no longer be an SOCP.

3.3. A branch-and-bound algorithm to solve the VaR p-median problem

In this section we assume that the VaR p-median problem (10) is feasible. Let OPT denote the value of problem

(10) and K = {0, 1}n2+n denote the set of possible integer solutions. If Z = {z|zi ∈ {0, 1}, i ∈ I, z ∈ Y }, for some

continuous set Y, let R(Z)= {z|0 zi 1, i ∈ I, z ∈ Y } denote the set that relaxes the binary constraints of Z. Define

max
z,w

w

s.t.
√

z′Rz 
m
′z− w

−U
−1(e)

,

z ∈ P ,

z ∈ Z (18)

and let OPT(Z) denote its optimal value. Note that OPT({0, 1}n2+n) = OPT and OPT(R(Z)) is a SOCP for any set

Z ⊆ [0, 1]n2+n. The branch-and-bound algorithm BB for solving the VaR p-median problem is as follows.

BB:

• Initialization:

(1) Set the initial queue Q= {K}.
(2) Find an initial lower bound1 L for OPT.

• Loop:

(1) If Q is empty, stop. The current value in z∗ is optimal.

(2) Choose the first element Z of the queue Q and remove it. If OPT(R(Z)) L or if

OPT(R(Z)) is infeasible, go to step 1.

1 For example, L can be equal to the VaR cost of any feasible allocation, which can be calculated using standard algorithms for the classic

p-median problem.
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(3) If the solution to OPT(R(Z)) is integer, set z∗ to be this solution and set

L= OPT(R(Z)). Go to step 1.

(4) Find the smallest index i such that zi is not integer. Insert Z1 = Z ∩ {zi = 0} and
Z2 = Z ∩ {zi = 1} into the queue Q. Go to step 1.

Remarks. Since we assumed the VaR p-median problem is feasible, the branch-and-bound algorithm is guaranteed

to find the optimal solution. Note that there is also an implicit degree of freedom in managing the queue Q. Different

policies, such as FIFO and LIFO, will lead to different exploration strategies of the underlying tree, such as depth-first

or breath-first.

4. Computational study

We implement BB in MATLAB [34]. More specifically, we modify the MATLAB bintprog2 procedure to utilize

the Disciplined Convex Programming [35] package to solve the SOCP relaxations. Our implementation of BB utilizes

the default options for bintprog: The branching strategy is to choose the variable with the maximum infeasibility

(i.e., the variable with value closest to 0.5) and the node search strategy is to choose the node with the lowest bound on

the objective function.

4.1. Experimental design

Recall that the aggregate vector of variables z is defined as

z= (y1, . . . , yn, x11, . . . , x1n, x21, . . . , x2n, x31, . . . , xnn).

We also give equations for the mean and variance of the profit, with slightly different indexing:

m
′z=−

n
∑

i=1

fiyi +
n
∑

i=1

n
∑

j=1

Di(rj − lji)xij (19)

and

z′Rz=
n
∑

i=1

n
∑

j=1

(vi(rj − lji)xij )
2 +

K
∑

k=1





n
∑

i=1

n
∑

j=1

sk
i (rj − lji)xij





2

. (20)

It is clear that

mk =
{

−fk, k = 1, . . . , n,

Di(rj − lji), k = n+ ij , i, j = 1, . . . , n.
(21)

Similarly, we can derive the coefficients of the covariance matrix to be

Rpq =











0, p n or q n,
∑K

k=1s
k
i (rj − lji)s

k
l (rm − lml), p = n+ ij , q = n+ lm,

i 6= l or j 6= m, i, j, l, m= 1, . . . , n,
∑K

k=1s
k
i (rj − lji)s

k
l (rm − lml)+ v2

i (rj − lji)
2, p = q = n+ ij , i, j = 1, . . . , n.

(22)

We generate the data for our simulation study in the following manner. We let the facility location fixed costs

fi,∀i be uniformly distributed in the interval [1000,1200]. Similarly, the average node demands Di,∀i are uniformly

distributed in the interval [200,300]. The revenues ri,∀i are uniformly distributed in [50,100] and the loads lij ,∀i, j
are independently uniformly distributed in the interval [20,60]; note that we do not assume symmetric loads. Finally,

we similarly model the risk factors: we set K = 4 and let sk
i ,∀i, k and vi,∀i be independently uniformly distributed

in [5,10].

2 bintprog is a branch-and-bound algorithm for solving 0–1 integer linear programs.
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Table 2

For each combination of n and e, we record the following data points: average objective function value, average time in s required to calculate

solution

n= 5 n= 10 n= 15

e= 0.01 (21,356; 0.72 s) (30,589; 8.45 s) (21,075; 76.83 s)

e= 0.05 (26,088; 0.83 s) (53,366; 4.41 s) (61,018; 25.93 s)

e= 0.10 (25,799; 0.79 s) (56,461; 9.12 s) (78,999; 7.68 s)

The averages are taken over 10 simulations.

We vary n and the confidence level e; in particular, we let n ∈ {5, 10, 15} and e ∈ {0.01, 0.05, 0.10}. We let p=n/5.

For each combination of n and e, we perform 10 simulations and record the average VaR objective function value and

the average time required to solve the problem, in seconds.

Table 2 tabulates the results of our computational experiment. We notice that for small values of n and realistic

confidence levels e, our algorithm computes the exact solution very quickly. An interesting observation for the n= 15

case is that the computation time increases significantly as the confidence level e is decreased; this behavior was not

present for the other values of n studied.

We next briefly mention the time required by our branch-and-bound algorithm for larger values of n for e = 0.10;

we report the performance of a single simulation run. For n = 20, our algorithm output a cost of 55,680, which took

7.27 min. For n=25, our algorithm output a cost of 51,226, which took 47.67 min. For larger values of n, our simulation

setup resulted in infeasible problem instances. In order to test our algorithm for larger values of n (for e = 0.10), we

instead generated the covariance matrix as

R= K
′
K,

where K is an (n2 + n) × (n2 + n) matrix whose elements are i.i.d. realizations of the standard normal distribution;

this design results in a positive semidefinite matrix R, which is necessary for a covariance matrix. We again report the

performance of a single simulation run. For n ∈ {30, 35, 40}, our algorithm successfully converged in 9.25, 43.51 min

and 1.76 h, respectively. Therefore, these computational results encourage the application of our algorithm in practice.

Further modifications of our algorithm are also possible to create a more efficient solution approach tailored to

specific applications, especially for larger values of n. In particular, more sophisticated branching strategies can be

implemented to take advantage of problem structure and the sparsity of the covariance matrix R might also be exploited.

However, detailed algorithmic analyses of this type are outside the scope of this paper.

5. Conclusion

In this paper, we have developed and examined a new algorithm for solving the p-median problem when the demands

are probabilistic and correlated. The best allocation decision was selected by balancing two often-conflicting objectives:

profit and associated uncertainty. We utilized concepts from nonlinear programming to design a branch-and-bound

algorithm to solve the problem exactly. The results presented in this paper open up a number of new applications in

location analysis. One such possibility is the connection between location decision and financial risk control, which is

an application currently dominated only by financial researchers. Due to the strategic nature of location selection, the

commitment of facility sites could have significant impact on a firm’s financial uncertainty. Therefore, it is apparent

that our model has the potential to improve corporate financial planning if the decision maker has the objective of

profit maximization, but also has concerns about risk control. Another natural extension is to investigate the capacitated

models in which capacity investment needs to include financial risk control when making decisions.
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