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We consider online versions of the traveling salesman problem (TSP) and traveling repairman problem
(TRP) where instances are not known in advance. Cities (points) to be visited are revealed over time,

while the server is en route serving previously released requests. These problems are known in the literature
as the online TSP (TRP, respectively). The corresponding offline problems are the TSP (TRP) with release dates,
problems where each point has to be visited at or after a given release date. In the current literature, the
assumption is that a request becomes known at the time of its release date. In this paper we introduce the
notion of a request’s disclosure date, the time when a city’s location and release date are revealed to the server. In
a variety of disclosure date scenarios and metric spaces, we give new online algorithms and quantify the value
of this advanced information in the form of improved competitive ratios. We also provide a general result on
polynomial-time online algorithms for the online TSP.
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1. Introduction
The traveling salesman problem (TSP) is one of the
most intensely studied problems in optimization. In
one of its simplest forms, we are given a metric space
and a set of points in the space, representing cities.
Given an origin city, the task is to find a tour of min-
imum total length, beginning and ending at the ori-
gin, that traverses each city at least once. Assuming
a constant speed, we can interpret this objective as
minimizing the time required to complete a tour. The
traveling repairman problem (TRP) is defined simi-
larly, except that we are interested in minimizing the
weighted sum of city completion times, where a city’s
completion time is the first time that a city is visited;
this objective is also referred to as the latency. These
two objectives embody important but very different
managerial measures. The TSP objective is closely
related to the notion of makespan, the maximum com-
pletion date of all cities; this measure is traditionally
used if one were to optimize with the server’s interest
in mind. Alternatively, the latency is closely related to
the (weighted) average completion date of all cities,
which clearly has the customers’ interests in mind. In
both problems we may also incorporate release dates,
where a city must be visited on or after its release
date; in this case the problems are known as the “TSP
with release dates” and the “TRP with release dates,”
respectively.

The assumption that problem instances are com-
pletely known a priori is unrealistic in many appli-
cations. Taxi, bus, and courier services, for example,
require an online model in which cities (points) to be
visited are revealed over time, while the server is
en route serving previously released requests. The
focus of this paper is on studying algorithms for the
online TSP and TRP. They are evaluated using the
competitive ratio, which is defined as the worst case
ratio of the online algorithm’s cost to the cost of an
optimal offline algorithm.

1.1. Literature Review
The literature for the TSP is vast. The interested
reader is referred to the books by Lawler et al. (1985)
and Korte and Vygen (2002) for comprehensive cov-
erage of results concerning the TSP. Probabilistic ver-
sions of the TSP, where a different approach is used to
represent limited knowledge of the problem instance,
have also attracted interest—e.g., see Jaillet (1985)
and Bertsimas (1988). Offline routing problems with
release dates can be found in Psaraftis et al. (1990)
and Tsitsiklis (1992). We also mention two offline
results that will play a part in our analysis: the
3/2-approximation algorithm for the TSP in metric
space by Christofides (1976) and the polynomial-time
approximation scheme for the TSP in Euclidean space
by Arora (1998).
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A systematic study of online algorithms was given
by Sleator and Tarjan (1985), who suggested com-
paring an online algorithm with an optimal offline
algorithm. Karlin et al. (1988) introduced the notion
of a competitive ratio. An online algorithm is said to
be r-competitive �r ≥ 1� if, given any instance of the
problem, the cost of the solution given by the online
algorithm is no more than r multiplied by that of an
optimal offline algorithm:

Costonline�I�≤ rCostoptimal�I�� ∀problem instances I �

The infimum over all r such that an online algo-
rithm is r-competitive is called the competitive ratio
of the online algorithm. An online algorithm is said
to be best-possible if there does not exist another online
algorithm with a strictly smaller competitive ratio.
Online algorithms have been used to analyze paging
in computer memory systems, distributed data man-
agement, navigation problems in robotics, multipro-
cessor scheduling, and so on. See the books of Borodin
and El-Yaniv (1998) and Fiat and Woeginger (1998) for
more details and references.
Research concerning online versions of the TSP

and TRP have been introduced relatively recently.
Kalyanasundaram and Pruhs (1994) have examined a
unique version of an online TSP where new cities are
revealed locally during the traversal of a tour (i.e.,
an arrival at a city reveals any adjacent cities that
must also be visited). More related to our paper is
the stream of works that started with the paper by
Ausiello et al. (2001). In this paper, the authors stud-
ied the online TSP version we consider here; they
analyzed the problem on the real line and on general
metric spaces, developing online algorithms for both
cases and achieving a best-possible online algorithm
for general metric spaces, with a competitive ratio
of 2. These authors also provide a polynomial-time
online algorithm, for general metric spaces, which
is 3-competitive. Subsequently, Ausiello et al. (2004)
gave a polynomial-time algorithm, for general met-
ric spaces, which is 2.78-competitive. Lipmann (1999)
developed a best-possible online algorithm for the
real line, with a competitive ratio of approximately
1�64. Blom et al. (2001) gave a best-possible online
algorithm for the nonnegative real line, with a com-
petitive ratio of 3/2. This last paper also considers dif-
ferent adversarial algorithms in the definition of the
competitive ratio.
Considering the online TRP, Feuerstein and Stougie

(2001) gave a lower bound of �1+√
2� for the com-

petitive ratio and a 9-competitive algorithm, both
for the online TRP on the real line. Krumke et al.
(2003) improved on this result to give a �1 + √

2�2-
competitive deterministic algorithm for the online
TRP in general metric spaces, as well as a �-
competitive randomized algorithm, where � ≈ 3�64;

in this paper, we correct this result to � ≈ 3�86. All
of the aforementioned works only consider the case
where a revealed city is ready for immediate ser-
vice, i.e., all the disclosure dates equal their respective
release dates.

1.2. Our Contributions
In this paper we introduce the notion of disclosure
dates, i.e., dates at which requests become known
to the online player, ahead of the release dates (the
dates at which requests can first be served). In many
applications, these two sets of dates do not coincide.
Consider the taxi and courier examples mentioned
previously; in each of these scenarios, there is the pos-
sibility of calling ahead (disclosure date) and request-
ing a pickup time (release date). In many cases, a
fixed amount of time between a request for service
and readiness exists; for example, many taxi compa-
nies usually say, “it’ll be 15 minutes.”
In addition to providing more realism, the intro-

duction of this advanced information is a natural
mechanism to increase the “power” of online play-
ers against all-knowing adversaries in a competitive
analysis framework. Note, also, that these disclosure
dates provide a natural bridge between online rout-
ing problems and their offline versions—when all the
disclosure dates are zero, we have the offline prob-
lems; when all the disclosure dates are equal to their
respective release dates, we have the online routing
problems considered so far in the literature, which we
denote the traditional online problems. In other words,
we can vary the “online-ness” of the problems with
these disclosure dates.
By introducing disclosure dates, we have defined a

new optimization problem: the online TSP with disclo-
sure dates. We measure the quality of algorithms for
this problem using the competitive ratio; the denom-
inator of this ratio is again the optimal value of the
TSP with release dates because disclosure dates are
irrelevant in the offline situation. For a variety of
disclosure date scenarios, we give new online algo-
rithms and derive improved competitive ratios (with
respect to the ratios for the traditional online prob-
lems), which are functions of the advanced infor-
mation. In this way, we quantify the value of the
advanced information given by the disclosure dates.
We almost exclusively consider the case where there
is a fixed amount of advanced notice for each city.
In this case, we introduce 	 and 
, two convenient
problem parameters that relate the advanced informa-
tion to the dimensions (time and space) of the tradi-
tional online problems (exact definitions of 	 and 

will be given in §§3 and 5, respectively); we quan-
tify the value of the advanced information in terms of
these two parameters. We first detail our results for
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the online TSP. For the nonnegative real line, we give
an algorithm that is max�1�3/2− 	�-competitive and
we also prove that this result is best-possible for our
disclosure date structure. These results improve upon
the 3/2-competitiveness of a best-possible online algo-
rithm in the traditional case. For the general situation,
where cities belong to an arbitrary metric space, we
give an algorithm that is �2−	/�1+	��-competitive.
This result improves on the 2-competitiveness of
a best-possible online algorithm for the traditional
metric case. Next, we consider the online TRP. We
analyze a deterministic algorithm and show it is
��1+√

2�2−	
/�	+
��-competitive, where �1+√
2�2

is the best provable worst-case ratio to date for the
traditional online problem (though this latter result
is probably not best-possible). We also give a very
similar result for a randomized modification of the
previous algorithm; we show this variant is �� −
	
/�	 + 
��-competitive, where � is the traditional
competitiveness result.
Finally, we consider polynomial-time algorithms

for the online TSP. We show that, if we have a

-approximation algorithm for the TSP, we then have
a 2
-competitive algorithm for the online TSP. If the
metric space is Euclidean, for any � > 0, we have a
�2+ ��-competitive polynomial-time algorithm.
The remainder of the paper is as follows: After giv-

ing basic definitions in §2, we first study in §3 the
online TSP on the nonnegative real line �+. Then,
in §§4 and 5 we study the online TSP and TRP in
general metric spaces, respectively. Finally, we study
polynomial-time online algorithms for the online TSP
in §6 and give concluding thoughts in §7.

2. Preliminaries
Let us first state the assumptions and definitions
about the problems we consider in the paper.
1. City locations belong to some metric space �.
2. A city is revealed to the salesman (repairman) at

its disclosure date.
3. A city is ready for service at its release date. The

service requirement at a city is zero.
4. The disclosure date for a given city is less than

or equal to the city’s release date.
5. The salesman (repairman) travels at unit speed

or is idle.
6. The problem begins at time 0, and the salesman

(repairman) is initially at a designated origin of the
metric space.
7. The online TSP objective is to minimize the time

required to visit all cities and return to the origin.
8. The online TRP objective is to minimize the

weighted sum of completion times, where each city’s
completion time is weighted by a given nonnegative
number, revealed at the city’s disclosure date.

The data common to both the online TSP and online
TRP are a set of points �li� ri� qi�, i= 1� � � � �n, where n
is the number of cities. The quantity li ∈� is the ith
city’s location. The quantity ri ∈ �+ is the ith city’s
release date; i.e., ri is the first time after which that
city i will accept service. The quantity qi ∈ �+ is the
ith city’s disclosure date; i.e., at time qi, the salesman
learns about city i’s request and its corresponding val-
ues li and ri. We also let � = �1� � � � �n�. We have that
ri ≥ qi ≥ 0, ∀ i ∈� . Finally, we let wi, i ∈� denote the
nonnegative weights on the completion times of cities
for the online TRP, which become known at times qi.
From the online perspective, the total number of

requests, represented by the parameter n, is not
known, and city i only becomes known at time qi.
CA�n� will denote the cost of online algorithm A on an
instance of n cities and COPT�n� is the optimal offline
cost on n cities (at times, the n term will be sup-
pressed). Finally, let rmax =maxi∈� �ri� and define LTSP
as the optimal TSP tour length through all cities in an
instance.

3. The Online TSP on �+
In this section, we study the online TSP when the
city locations are all on the nonnegative real line; i.e.,
�=�+. We begin with an offline analysis.
We consider the offline TSP with release dates on

the nonnegative real line. For this problem, Psaraftis
et al. (1990) proposed an optimal strategy:
Optimal Offline Algorithm.
1. Go directly to city lmax =maxi∈� �li�.
2. Wait at city lmax for maxi∈� �max�0� ri−2lmax+ li��

units of time.
3. Proceed directly back to the origin.
The waiting time is calculated to ensure that the

salesman’s return to the origin finds each city ready
for service. A closed-form expression for COPT�n� is as
follows:

COPT�n� = 2lmax +max
i∈�

�max�0� ri − 2lmax + li��

= max
i∈�

�max�2li� ri + li���

3.1. Online Algorithms
In this subsection, we consider two online algorithms.
The first considers the case qi = ri, ∀ i ∈� and was first
proposed and analyzed by Blom et al. (2001), under
the name move-right-if-necessary. Subsequently, we
present a generalization of this algorithm for the case
qi ≤ ri, ∀ i ∈� , which we call move-left-if-beneficial.

3.1.1. The Move-Right-If-Necessary Algorithm.
We assume that qi = ri, ∀ i ∈ � and we consider the
following online strategy, hereafter called the move-
right-if-necessary (MRIN) algorithm.
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Algorithm MRIN.
1. If there is an unserved city to the right of the

salesman, he moves toward it at unit speed.
2. If there are no unserved cities to the right of the

salesman, he moves back toward the origin at unit
speed.
3. Upon reaching the origin, the salesman becomes

idle.
The cost of the MRIN algorithm on an instance of

n cities is denoted by CMRIN�n�. We have the following
theorem from Blom et al. (2001).

Theorem 1. CMRIN�n�≤ �3/2� ·COPT�n�� ∀n.
We also have a hardness result that can be obtained

from the analysis in Blom et al. (2001); see Theorem 2.

Theorem 2. Let 
 be the competitive ratio for any
deterministic online algorithm for the online TSP on �+.
Then 
≥ 3/2.

Thus, MRIN is a best-possible online algorithm
(restricted to the case where qi = ri, ∀ i ∈� ).

3.1.2. The Move-Left-If-Beneficial Algorithm. We
now consider the case where qi ≤ ri, ∀ i ∈ � . Notice
that by ignoring the existence of requests until their
release dates, MRIN can be applied again and will
yield the same competitive ratio of 3/2. However, a
natural adaptation of MRIN does benefit from the
disclosure dates. Thus, we define the move-left-if-
beneficial (MLIB) algorithm.
Algorithm MLIB.
1. If there is an unserved city to the right of the

salesman, he moves toward it at unit speed.
2. If there are no unserved cities to the right of the

salesman, he moves back toward the origin if and
only if the return trajectory reaches all unserved cities
on or after their release date; otherwise, the salesman
remains idle at his current location.
3. Upon reaching the origin, the salesman becomes

idle.
The cost of the MLIB algorithm on an instance

of n cities is denoted by CMLIB�n�. We would like
to emphasize that the MLIB algorithm applied to
an instance where qi = ri, ∀ i ∈ � is indistinguish-
able from the MRIN algorithm applied to the same
instance. In addition, the MLIB algorithm applied to
an instance where qi = 0, ∀ i ∈� is also indistinguish-
able from the optimal offline algorithm. In this sense,
MLIB fully incorporates the advanced information of
the disclosure dates. In §3.2, we analyze the MLIB
algorithm for a special case; in §3.3 we give a general
analysis.

3.2. Equal Amounts of Advanced Notice
In this subsection, we first give some technical results
for the general case. Then we introduce a special
structure for the disclosure dates and show that MLIB
is best-possible while MRIN is not.

Lemma 1. CMLIB�n�≤maxi∈� �max�qi + 2li� ri + li��.

Proof. Suppose CMLIB�n�= z >maxi∈� �max�qi+2li�
ri+ li��. Consider the final segment of the MLIB sales-
man’s trajectory, i.e., the segment of the trajectory
where the salesman returns directly to the origin
without changing direction or waiting. We can fully
describe this segment of the trajectory as xt = z − t,
t ∈ �t0� z� for some t0, the time the salesman begins
his final return. Note that it is possible that t0 = z. We
have two cases to consider at time t0:

Case 1. At t−0 , the salesman was moving away from
the origin toward city k and reached it at t0 such that
t0 ≥ rk. City k is the rightmost unserved city at time t0.
The salesman then starts the xt trajectory, returning
to the origin, reaching each unserved city along the
way on or after its release date. Because the salesman
was moving away from the origin, the worst possi-
ble location for him to be when city k was disclosed
was the origin. So the salesman should arrive at city k
at time no later than qk + lk. Thus, xt0 = lk, for some
t0 ≤ qk + lk, implying that z= lk + t0 ≤ qk + 2lk, which
contradicts our assumption.

Case 2. The salesman has just finished waiting at
some point, possibly the origin, so that the xt trajec-
tory reaches all cities on or after their release date.
Thus, ∃m such that xt = lm, for t = rm, where rm ∈
�t0� z�. Consequently, z= lm + rm, which again contra-
dicts our assumption. �

We now prove a proposition that simplifies the sub-
sequent analysis. This proposition depends on the
concept of an ignored city, which is defined as follows:
An ignored city is viewed to have never existed, i.e.,
it will not be taken into account when calculating the
online and offline costs.

Proposition 1. For any instance of the online TSP
on �+ that has both a request away from the origin and a
request at the origin, ignoring the latter will not decrease
the ratio CMLIB�n�/COPT�n�.

Proof. Let 
CMLIB denote the cost if the request at
the origin was ignored. If the release date of the
request at the origin is later than 
CMLIB, the proposi-
tion is trivially true. Otherwise, the behavior of MLIB
is not affected by the request, but the optimal solution
value may decrease by deleting it. �

When all cities are located at the origin, we have
that CMLIB�n�=COPT�n�. The above proposition allows
us to make the following assumption without a loss of
generality (for our intention of proving upper bounds
on competitive ratios).

Assumption 1. li > 0 for all i ∈� .

We now consider the situation where the online
salesman receives a fixed amount of advanced notice
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for each city in a problem instance. In particular, there
exists a constant a ∈ �0� rmax� such that

qi = �ri − a�+� ∀ i ∈� �

where �x�+ =max�x�0�. Noting that LTSP = 2lmax, we
have the following theorem.

Theorem 3. CMLIB�n� ≤ max�1�3/2 − 	�COPT�n�,
where 	= a/LTSP.

Proof. From Lemma 1, we have that

CMLIB�n�≤max
i∈�

�max�qi + 2li� ri + li��� (1)

Define � = �i ∈ � � qi > 0�; note that for i ∈ � , qi =
ri−a. If � =�, CMLIB�n�=COPT�n� trivially. Otherwise,
we write the right-hand side of Equation (1) as

max
{
max
i∈�

�max�qi+2li� ri+li���max
i∈� \�

�max�2li� ri+li��
}
�

which is less than or equal to max�maxi∈� �max�qi +
2li� ri + li���COPT�n��. Let us assume maxi∈� �max�qi +
2li� ri + li�� > COPT�n�; otherwise CMLIB�n� = COPT�n�
and we are done. We can now rewrite Equation (1) as
CMLIB�n�≤maxi∈� �max�qi+2li� ri+ li��. The latter term
can be rewritten as maxi∈� �ri + li +max��li − a��0��≤
maxi∈� �ri+ li+max��lmax−a��0��. Now, if a > lmax, we
have that CMLIB�n�≤maxi∈� �ri+ li�, which implies that
CMLIB�n�= COPT�n�, and the first part of the lemma is
proved. Now, considering the case where a≤ lmax, we
have that

CMLIB�n� ≤ max
i∈�

�ri + li +max��lmax − a��0��

= max
i∈�

�ri+li�+�lmax−a�≤COPT�n�+�lmax−a��

We rewrite �lmax − a� as  lmax, where  = �lmax − a�/
lmax ≤ 1. Note that  lmax ≤ � /2�COPT�n�. Thus,
CMLIB�n�≤ COPT�n�+ �lmax − a�= COPT�n�+  lmax ≤ �1+
 /2�COPT�n� = �3/2− a/�2lmax��COPT�n�, and this com-
pletes the proof of the second part of the lemma. �

Recalling that 3/2 is the best-possible competi-
tive ratio in the traditional setting, we say that the
value of the disclosure dates is 	. We now show
that MLIB is in fact a best-possible algorithm in this
situation.

Theorem 4. Let A be an arbitrary deterministic online
algorithm with cost CA�n� on an instance of n cities. Then
∀n≥ 2, there exists an instance of size n where the online
cost is at least �3/2−	� ∈ �1�3/2� times the optimal offline
cost, where 	= a/LTSP.

Proof. Let n ≥ 2. Generate an instance of �n − 1�
cities arbitrarily and let CA�n−1� be the online cost of

this algorithm on these �n− 1� cities; i.e., algorithm A
serves all �n − 1� cities and returns to the origin at
time t =CA�n−1�. At this time, city n becomes known
to algorithm A:

�ln� rn� qn�= �a+CA�n− 1�� a+CA�n− 1��CA�n− 1���

Note that lmax = ln = a+CA�n−1�, because CA�n−1�≥
COPT�n− 1�≥ 2li, ∀ i < n. Considering algorithm A, its
salesman is at the origin at time qn. Thus,

CA�n�≥ qn + 2ln = 3CA�n− 1�+ 2a�

Considering the optimal offline algorithm, we have
that COPT�n� = max�COPT�n − 1��2�CA�n − 1� + a�� =
2�CA�n−1�+a�, because CA�n−1�≥COPT�n−1�. Note
that COPT�n� > 0 by Assumption 1. Thus,

CA�n�

COPT�n�
≥ 1+ CA�n− 1�

2�CA�n− 1�+ a�

= 1+ CA�n− 1�
2lmax

= 1+ lmax − a

2lmax

= 3
2
− a

2lmax
�

Note that by construction, a ≤ lmax and, conse-
quently, 3/2− a/�2lmax� ∈ �1�3/2�. �

Notice that disclosure dates do not affect MRIN;
a single city instance where r1 = l1 still induces an
online cost, which is 3/2 times the optimal offline cost.
We thus have the following corollary.

Corollary 1. Algorithm MLIB is a best-possible on-
line algorithm under the restriction qi = �ri − a�+, ∀ i ∈� .
In addition, algorithm MRIN is not best-possible.

3.3. In-Depth Online Analysis of MLIB Under
General Disclosure Dates

In this subsection, we give a general result (of a
technical nature) for the MLIB algorithm. We also
present an interesting example where advanced infor-
mation is actually detrimental. We first introduce
some definitions.
Definition 1.
1. " = minj∈S"�n��qj/lj �, where S"�n� = �j � qj + 2lj =

maxi∈� �max�qi + 2li� ri + li���.
2. % = minj∈S%�n��lj/qj �, where S%�n� = S"�n� ∩ �j �

qj > 0�.
3. & = minj∈S& �n��qj/rj �, where S&�n� = S"�n� ∩ �j �

rj > 0�.

Theorem 5.
1. If either or both of the sets S%�n� and S&�n� are empty,

then CMLIB�n�=COPT�n�.
2. Otherwise,CMLIB�n�≤ �1+min�&/2�"/2�%/�1+%���

·COPT�n�.
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3. In addition, when well defined, �1+min�&/2�"/2�
%/�1+%���≤ 3/2.

Proof. We first analyze the second part of the theo-
rem, where S%�n� and S&�n� are both nonempty. We let
m be the index that attains the minimum in the defini-
tion of "; i.e., qm = "lm. By Lemma 1 and Equation (1),
we have that

CMLIB�n� ≤ qm + 2lm

= �"+ 2�lm

≤
(
1+ "

2

)
COPT�n�� (2)

Let p be the index that attains the minimum in the
definition of %; i.e., lp = %qp. By Lemma 1 and Equa-
tion (1), we have that

CMLIB�n� ≤ qp + 2lp

= qp + lp + lp

(
1+%

1+%

)

= qp + lp +
%qp +%lp

1+%

=
(
1+ %

1+%

)
�qp + lp�

≤
(
1+ %

1+%

)
COPT�n��

Finally, we let k be the index that attains the mini-
mum in the definition of &; i.e., qk = &rk. By Lemma 1,
we have that

CMLIB�n� ≤ qk + 2lk

= &rk + 2lk�

We consider three possibilities:
1. If lk > rk, we have that 2lk + &rk < �2 + &�lk ≤

�1+&/2�COPT�n�.
2. If lk < �1−&�rk, 2lk +&rk < lk + rk ≤COPT�n�.
3. If �1− &�rk ≤ lk ≤ rk, we can let lk = �1− �&�rk for

some �& ∈ �0�&�. After some simple algebra, we see
that

2lk +&rk = �rk + lk�+
&− �&
1− �& lk

≤ COPT�n�+&lk ≤
(
1+ &

2

)
COPT�n��

where the first inequality holds because the func-
tion f&� �&� = �&− �&�/�1− �&� attains a maximum of &
(when �& = 0) on the domain �0�&�, because & ≤ 1.
Thus, CMLIB�n�≤ �1+ &/2�COPT�n�. The previous anal-
yses were mutually exclusive, so we may conclude
that, if S%�n� and S&�n� are both not empty, CMLIB�n�≤
�1+min�&/2�"/2�%/�1+%���COPT�n�.
We now analyze the first part of the theorem.

We have that either or both S%�n� and S&�n� are

empty. We first consider the case where the superset
S"�n�=�. In this situation, there exists a city j s.t.
rj + lj =maxi∈� �max�qi+2li� ri+ li��. By Lemma 1 and
Equation (1) we have that

CMLIB�n� ≤ rj + lj

≤ COPT�n��

Recalling that CMLIB�n� ≥ COPT�n�, we conclude
that CMLIB�n� = COPT�n�. Now, assume S"�n� contains
at least one element. If S%�n� is empty, then " = 0.
The analysis that results in Equation (2) proves that
CMLIB�n� ≤ COPT�n�. Thus, CMLIB�n� = COPT�n�. Now, if
S&�n� is empty, rj = 0, ∀ j ∈ S"�n�. This again implies
that "= 0 and, consequently, CMLIB�n�=COPT�n�.
We conclude by analyzing the third part of the

theorem. Because min�"�%� ≤ 1 (also & ≤ 1), �1 +
min�&/2�"/2�%/�1+%���≤ 3/2. �

Because the best-possible online algorithm, with no
disclosure dates, has a competitive ratio of 3/2, we
say that the value of the disclosure dates is




1
2
−min

{
&

2
�
"

2
�

%

1+%

}
�

if % and & are well defined

1
2
� otherwise�

To conclude our analysis of the online TSP on the
nonnegative real line, we provide an example where
the advanced information of the disclosure dates is
actually detrimental.
Example. Consider the two-city instance where

q1 = 0, r1 = l1 = 1, q2 = r2 = 2, and l2 = 1. This
instance induces the following costs: CMRIN�2�= 3 and
CMLIB�2�= 4.
However, we have conducted computational exper-

iments that confirm the intuitively clear superiority of
MLIB over MRIN, on average.

4. The Online TSP on General
Metric Spaces

We now consider the general case where cities belong
to a generic metric space�. Let d�·� ·� be the metric for
the space and o the origin. We consider the value of
advanced information, for the structure qi = �ri − a�+,
∀ i ∈ � , providing lower and upper bounds on the
competitive ratio. The proof of our first result consists
of simple modifications of the proof of Theorem 3.1
in Lipmann (2003).

Theorem 6. Any 
-competitive algorithm for the on-
line TSP on a metric space �, with qi = �ri − a�+, i ∈ � ,
has 
≥ 2/�1+	�, where 	= a/LTSP.
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Proof. Define a metric space � as a graph with
vertex set V = �1�2� � � � �n� ∪ �o� with distance func-
tion d that satisfies the following: d�o� i� = 1 and
d�i� j�= 2 for all i �= j ∈ V \�o�.
At time 0, there is a request at each of the n cities

in V \�o�. If an online server visits the request at city i
at time t ≤ 2n− 1− �, for some small �, then at time
t+ �, a new request is disclosed at city i.
In this way, at time 2n−1 the online server still has

to serve requests at all n cities; furthermore, at time
2n− 1, all cities have only been disclosed, not neces-
sarily released. Therefore, the online cost is at least the
corresponding value in the situation where all cities
have been released by time 2n−1. This latter value is
at least 4n− 2. Therefore, denoting CA as the online
cost of an arbitrary online algorithm A, we have that
CA ≥ 4n− 2.
The optimal offline server will also have some dif-

ficulty with the differences between the disclosure
dates and release dates. We first note that, had the
cities been released rather than disclosed at the above-
mentioned times, the optimal offline cost would have
been 2n. We now exploit the structure of the disclo-
sure date–release date relationship: By waiting a units
of time at any disclosed city, the city’s release date
will arrive. Therefore, it is clear that COPT ≤ 2n + a.
Finally, by noting that LTSP = 2n, we have that

CA

COPT
≥ 4n− 2
2n+ a

= 2
1+	

− 2
2n+ a

�

Taking n arbitrarily large proves the theorem. �

Now, we give the first of two generalizations of the
2-competitive online algorithm PAH, originally pro-
posed by Ausiello et al. (2001). We call our algorithm
Plan-At-Home-disclosure-dates (PAH-dd).
Algorithm PAH-dd.
1. Whenever the salesman is at the origin, he starts

to follow a tour that serves all cities whose disclosure
dates have passed but have not yet been served; this
tour is constructed using an algorithm A that exactly
solves an offline TSP with release dates.
2. If at time qi, for some i, a new city is presented

at point x, the salesman takes one of two actions
depending on the salesman’s current position p.

2a. If d�x� o� > d�p� o�, the salesman goes back to
the origin (following the shortest path from p) where
he appears in a Case 1 situation.

2b. If d�x� o� ≤ d�p� o�, the salesman ignores the
city until he arrives at the origin, where again he reen-
ters Case 1.

Theorem 7. Algorithm PAH-dd is �2 − 	/�1+	��-
competitive, where 	= a/LTSP.

Proof. Let p�t� be the position of the salesman at
time t. As in Ausiello et al. (2001), we provide a

case-by-case analysis. Let us consider the state of the
algorithm at time qn, the final disclosure date.

Case 1. The salesman is at the origin at time qn.
Let � be the tour, calculated by algorithm A at
time qn, that visits all unserved cities; for simplicity,
we let � also denote the duration of the tour. Letting
CPAH-dd denote the online cost of our new algorithm,
we have that

CPAH-dd = qn +�

= rn +� − a

≤ COPT + �� − a�

= COPT + �1− a/� ��

≤ COPT + �1− a/� �COPT�

where the last inequality is by � ≤COPT. Inserting the
obvious bound � ≤ a + LTSP proves the theorem for
this case.

Case 2a. We have that d�o� ln� > d�o�p�qn�� and the
salesman returns to the origin, arriving before time
qn + d�o� ln�= rn + d�o� ln�− a. Once at the origin, the
salesman uses algorithm A to compute a tour � ′.
Clearly, rn + d�o� ln�≤COPT. Thus, we have that

CPAH-dd ≤ rn + d�o� ln�+ �� ′ − a�

≤ COPT+
(
1− 	

1+	

)
COPT=

(
2− 	

1+	

)
COPT�

Case 2b. We have that d�o� ln�≤ d�o�p�qn��. Suppose
that the salesman is following a route � that had
been computed the last time he was at the origin.
Clearly, �≤ COPT. Let � be the set of cities temporar-
ily ignored since the last time the salesman was at the
origin. Let j be the index of the first city in � that
is visited by the optimal offline algorithm. Let �� be
the shortest path starting from location lj at time rj ,
visiting all other cities in �, while respecting the
release dates, and terminating at the origin. Clearly,
rj +�� ≤COPT.
City j was ignored when it was disclosed, so we

have that d�o� lj � ≤ d�o�p�qj��. Thus, at time qj the
salesman had already traveled at least a distance
d�o� lj � on � and will complete � at the latest at time
t� = qj + � − d�o� lj �. Next, the salesman will com-
pute ��, a tour covering �.
At time t�, consider an alternate strategy that

first goes to city j , possibly waits for city j to be
released, and then follows the shortest path through
the cities in �; this latter path is at most ��.
Clearly, �� will finish before this alternate strategy
finishes. Next, notice that the completion time of ��

is also the completion time of PAH-dd; therefore, we
have that
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CPAH-dd ≤ max�t� + d�o� lj �� rj �+��

= max�t� + d�o� lj �+��� rj +���

≤ max�t� + d�o� lj �+���COPT�

= max�qj +�+���COPT�

= max��rj +���+ ��− a��COPT�

≤ max
{
COPT +

(
1− 	

1+	

)
COPT�COPT

}

=
(
2− 	

1+	

)
COPT� �

Because the best-possible algorithm for the online
metric TSP has a competitive ratio of 2, Theorems 6
and 7 indicate that the value of the disclosure dates is
at least 	/�1+	� and no more than 2	/�1+	�.

5. The Online TRP on General
Metric Spaces

Thus far, we have been analyzing versions of the
online TSP, where the objective is arguably in the sales-
man’s interest. We now consider another objective, the
weighted latency, which is an objective that is arguably
in the cities’ interest; additionally, the weights may be
chosen to favor certain cities over others.
In §5, we consider the online TRP with arbitrary

weights. Our objective is to minimize
∑

i∈� wiCi, where
Ci is the completion time of city i, the first time it
is visited after its release date, and the wi are arbi-
trary nonnegative weights. Again, li ∈ �, for any
metric space �; we consider the situation where
qi = �ri − a�+, ∀ i ∈� .

5.1. A Deterministic Online TRP Algorithm for
General �

Let , = �1+√
2�, b0 =min�rj � rj ≥ a/,� and bi = ,ib0.

Also, let b̃i = bi − a. The definition of b0 ensures
that b̃1 ≥ 0, which is necessary for Step 1 of BREAK
(to be defined shortly) to be feasible. The latter b̃i
parameters are the breakpoints where the online
algorithm BREAK will generate some reoptimization.
Our algorithm is a generalization of the �1+√

2�2-
competitive INTERVAL	 by Krumke et al. (2003)
(	 in Krumke et al. 2003 is equivalent to , in this
paper), which reoptimizes at times bi. Let Qi, i ≥ 1
denote the set of cities released up to and includ-
ing time bi; clearly Qi ⊆Qi+1, ∀ i. Note that at time b̃i
the online repairman knows Qi. Let Ri denote the set
of cities served by algorithm BREAK in the interval
�b̃i� b̃i+1� and R∗

i the set of cities served by the optimal
offline algorithm in the interval �bi−1� bi�. Finally, let
w�S�=∑

i∈S wi.

Definition 2. Online algorithm BREAK1

1. Remain idle at the origin until time b̃1.
2. At time b̃1, calculate a path of length at most b1

to serve a set of cities R1 ⊆ Q1 such that w�R1� is
maximized.
3. At time b̃i, i ≥ 2, return to the origin and then

calculate a path of length at most bi to serve a set of
cities Ri ⊆Qi\∪j<i Rj such that w�Ri� is maximized.
This algorithm is easily seen to be feasible—actions

in iteration i are completed before actions in iteration
�i+1� are to begin. We begin our analysis of algorithm
BREAK with the following lemma, which generalizes
a result in Krumke et al. (2003). Our proof of this
lemma is quite different from that of Krumke et al.
(2003), and follows the proof of a similar result in the
machine scheduling literature (see Hall et al. 1997).

Lemma 2. For any k≥ 1,
∑k

i=1w�Ri�≥
∑k

i=1w�R
∗
i �.

Proof. Consider iteration k ≥ 2 and let R =
∪k
l=1R

∗
l \ ∪k−1

l=1 Rl. If a repairman were at the origin at
time zero, he could serve all the cities in the set R by
time bk.
Now, consider an online repairman at time b̃k. Sup-

pose he knew the set R. Then, by returning to the
origin, taking at most bk−1 time units, the repairman
could serve the cities in R by time b̃k+ bk−1+ bk = b̃k+1
(equality since 	= �1+√

2�). Thus, in iteration k, the
repairman could serve cities of total weight w�R�.
Unfortunately, the repairman does not know R

because the R∗
i are not known until all cities are

released. However, the repairman’s task is to find a
subset of S =Qk\ ∪k−1

l=1 Rl. Because Qk ⊇∪k
l=1R

∗
l , S ⊇R,

and the online repairman is able to choose a subset
of S to serve in iteration k of total weight at least w�R�,
because choosing R as the subset is a feasible choice.
A similar argument holds for k= 1.
Now, for any k,

w�Rk� ≥ w�R�

= ∑
j∈∪k

l=1R
∗
l \∪k−1

l=1 Rl

wj

=
k∑
l=1

w�R∗
l �−

∑
j∈�∪k

l=1R
∗
l �∩�∪k−1

l=1 Rl�

wj

≥
k∑
l=1

w�R∗
l �−

∑
j∈∪k−1

l=1 Rl

wj

=
k∑
l=1

w�R∗
l �−

k−1∑
l=1

w�Rl��

which gives the result. �

The following corollary is evident from Lemma 2.

1 Note that BREAK is not a polynomial-time algorithm because
Step 2 requires the exact solution of the NP-hard orienteering prob-
lem (Blum et al. 2003).
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Corollary 2. Suppose the optimal offline algorithm
visits the last city in its tour in interval �bp−1� bp� for some
p≥ 1. Then the online algorithm BREAK will visit its last
city by time b̃p+1.

We now give the main theorem of this section.

Theorem 8. Algorithm BREAK is ��1 + √
2�2 −

	
/�	+
��-competitive, where 	 = a/LTSP and 
 =
a/rmax.

Proof of Theorem 8. We begin by stating Lemma 6
from Krumke et al. (2003): Let ai� bi ∈ �+, for i =
1� � � � � p. If

∑p
i=1 ai =

∑p
i=1 bi and

∑p′
i=1 ai ≥

∑p′
i=1 bi for

all 1 ≤ p′ ≤ p, then
∑p

i=1 0iai ≤
∑p

i=1 0ibi for any non-
decreasing sequence 0 ≤ 01 ≤ · · · ≤ 0p. Applying this
lemma, we have that

CBREAK ≤
p∑

k=1
b̃k+1w�Rk�

≤
p∑

k=1
b̃k+1w�R

∗
k�

=
p∑

k=1
�bk+1− a�w�R∗

k�

=
p∑

k=1
�,2bk−1− a�w�R∗

k�

=
p∑

k=1

∑
l∈R∗

k

�,2bk−1− a�wl

≤
p∑

k=1

∑
l∈R∗

k

�,2C∗
l − a�wl�

where C∗
l is the completion time of city l by the opti-

mal offline algorithm. Now, suppose there exists &
such that �,2C∗

l − a� ≤ &C∗
l , ∀ l. Then, algorithm

BREAK would be &-competitive. It is clear to see that
& = ,2−a/C∗

max is the smallest such value to satisfy the
requirements, where C∗

max = maxi∈� �C∗
i �. Thus, algo-

rithm BREAK is �,2 − a/C∗
max�-competitive. Finally,

using the fact that C∗
max ≤ rmax + LTSP, we achieve the

result. �

The best deterministic algorithm to date (INTER-
VAL	) for the online metric TRP is �1 + √

2�2-
competitive, so we say that the value of the disclosure
dates is 	
/�	+
�.

5.2. A Randomized Online TRP Algorithm for
General �

We may also define a randomized algorithm
BREAK-R as algorithm BREAK with the following
substitution: b0 �→ ,Ub0, where U is a uniform random
variable on �0�1�. We have the following theorem for
this randomized algorithm; its proof is quite similar
to that of Theorem 8 and is omitted.

Theorem 9. Algorithm BREAK-R is ��−	
/�	+
��-
competitive, where 	= a/LTSP, 
= a/rmax, and �≈ 3�86.

Remark 1. To the best of our knowledge, algo-
rithms INTERVAL	 and RANDINTERVAL	 (Krumke
et al. 2003) are the best online algorithms to date for
the online TRP, regardless of the metric space; i.e., we
are not aware of any algorithms that improve these
results for any simpler metric spaces, such as �+ or �.
Therefore, we do not have any new results specific to
these particular metric spaces.

5.3. A Correction to a Previously Published Result
When a = 0, algorithm BREAK-R corresponds to a
realization of the 	-parameterized (this 	 is unre-
lated to the 	 = a/LTSP utilized in this paper) online
algorithm RANDINTERVAL	, given in Krumke et al.
(2003). The values of 	 for which RANDINTERVAL	

is a feasible algorithm were given incorrectly in
Krumke et al. (2003): The given range 	 ∈ �1+√

2�3�
should have read 	 ∈ �1�1 + √

2�, because the algo-
rithm requires �	+ 1�/�	�	− 1�� ≥ 1. This led to an
erroneous result that stated that RANDINTERVAL	

was 
�-competitive, 
� ≈ 3�64. Using the correct
range for 	, it is straightforward to see that
RANDINTERVAL	 is �-competitive, where �≈ 3�86.

5.4. A Final Note on the Online Dial-a-Ride
Problem

Finally, note that Theorems 8 and 9 also hold for the
online dial-a-ride problem, which is a generalization
of the TRP. Instead of a customer (city) requesting a
visit, a customer requests a ride from a source location
to a destination location. The completion time of a
customer is the time that the customer reaches the
destination. The subroutine in the BREAK algorithm
that calculates paths maximizing the weight of served
customers must simply be modified to incorporate the
new requirements of a customer.

6. Polynomial-Time Online
Algorithms for the Online TSP

We now give our second generalization of algorithm
PAH (Ausiello et al. 2001), which we shall denote as
PAH-p because all subroutines are polynomial-time.
In this section, we only consider the traditional case
where qi = ri, ∀ i ∈� .
Algorithm PAH-p.
1. Whenever the salesman is at the origin, he starts

to follow a tour that serves all cities whose release
dates have passed but have not yet been served; this
tour is constructed using an 
-approximation algo-
rithm A that solves an offline TSP.
2. If at time ri, for some i, a new city is presented

at point x, the salesman takes one of two actions
depending on the salesman’s current position p:
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2a. If d�x� o� > d�p� o�, the salesman goes back to
the origin (following the shortest path from p) where
he appears in a Case 1 situation.

2b. If d�x� o� ≤ d�p� o�, the salesman ignores the
city until he arrives at the origin, where again he reen-
ters Case 1.

Theorem 10. Algorithm PAH-p is 2
-competitive.

Proof. Let rn be the time of the last request, ln the
position of this request and p�t� the location of
the salesman at time t. We show that in each of the
Cases 1, 2a, and 2b, PAH-p is 2
-competitive.

Case 1. PAH-p is at the origin at time rn. Then
it starts a 
-approximate tour that serves all the
unserved requests. The time needed by PAH-p is
at most rn +
LTSP ≤ �1+
�COPT ≤ 2
COPT.

Case 2a. We have that d�o� ln� > d�o�p�rn��. PAH-p
returns to the origin, where it will arrive before time
rn+d�o� ln�. After this, PAH-p computes and follows a

-approximate tour through all the unserved requests.
Therefore, the online cost is at most rn + d�o�p�rn��+

LTSP < rn+d�o� ln�+
LTSP. Noticing that rn+d�o� ln�≤
COPT, we have that the online cost is at most �1+ 
� ·
COPT ≤ 2
COPT.

Case 2b. We have that d�o� ln�≤ d�o�p�rn��. Suppose
PAH-p is following a route � that had been com-
puted the last time it was at the origin. Note that �≤

LTSP ≤ 
COPT. Let � be the set of requests temporarily
ignored since the last time PAH-p was at the origin.
Let lq be the location of the first request in � served by
the offline algorithm and let rq be the time at which lq
was released. Let �� be the shortest path that starts
at lq , visits all the cities in �, and ends at o. Clearly,
COPT ≥ rq +�� and COPT ≥ d�o� lq�+��.
At time rq , the distance that PAH-p still has to

travel on the route � before arriving at o is at most
�− d�o� lq�, because d�o�p�rq�� ≥ d�o� lq� implies that
PAH-p has traveled on the route � a distance not
less than d�o� lq�. Therefore, it will arrive at o before
time rq + � − d�o� lq�. After that, it will follow a

-approximate tour �� that covers the set �; letting � ∗

�

be the optimal tour over the set �, we have that �� ≤

� ∗

� . Hence, the completion time will be at most rq +
�−d�o� lq�+
� ∗

� . Because �
∗
� ≤ d�o� lq�+��, we have

that the online cost is at most

rq +�− d�o� lq�+
d�o� lq�+
��

= �rq +���+�+ �
− 1��d�o� lq�+���

≤COPT +
COPT + �
− 1�COPT

= 2
COPT� �

Applying well-known algorithms by Christofides
(1976) and Arora (1998), we are able to attain two
interesting corollaries.

Corollary 3. If we choose A as Christofides’s heuris-
tic, Algorithm PAH-p is 3-competitive.

This matches the 3-competitive polynomial-time
algorithm given in Ausiello et al. (2001). However,
a polynomial-time algorithm with a competitive ratio
of at most 2.78 was recently given in Ausiello et al.
(2004).

Corollary 4. If � is Euclidean and we choose A as
Arora’s PTAS, for any � > 0, Algorithm PAH-p is �2+ ��-
competitive.

To the best of our knowledge, this is the first result
for the online TSP in the Euclidean metric space.
Remark 2. We have attempted to combine our

analyses, to find a single result that unifies a poly-
nomial-time algorithm and the value of informa-
tion. Our approach would have improved upon the
above results if we had a 
-approximation algo-
rithm for the TSP with release dates, where 
 < 5

2 .
Trivially (wait until the last release date and then
form a Christofides approximate tour) we have a
5
2 -approximation algorithm; unfortunately, we know
of no algorithm that has a better approximation
ratio.

7. Conclusion
We have considered online versions of two well-
studied routing optimization problems, the traveling
salesman problem (TSP) and the traveling repairman
problem (TRP). These two problems embody two
major types of objectives: optimizing in the server’s
interest and optimizing in the customers’ interest. We
introduced the notion of a disclosure date, which
brings with it a number of benefits. First, we are
allowed to relax the pessimistic definition of the com-
petitive ratio. Second, this relaxation is natural, in the
sense that realistic problems can be modeled with dis-
closure dates. Third, the disclosure dates allow us to
vary the online-ness of a problem.
With these disclosure dates in place, we show their

value in the form of improved competitiveness results
for both the online TSP and TRP, in a variety of metric
spaces. For the nonnegative real line, we show that
our algorithm is strictly optimal.
Finally, we consider polynomial-time online algo-

rithms for the traditional (no disclosure dates) online
TSP on metric spaces and we give the first competi-
tiveness result for Euclidean metric spaces.
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