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Abstract. In this note, we identify a statistically significant error in naively estimating the 
expected profit in a data-driven newsvendor model, and we show how to correct the error. 
In particular, we analyze a newsvendor model where the continuous demand distribution 
is not known, and only a sample of demand data is available. In this context, an empirical 
demand distribution, that is induced by the sample of data, is used in place of the 
(unknown) true distribution. The quantity at the critical percentile 1� c=p of the empirical 
distribution is known as the sample average approximation order quantity, where p is the 
unit revenue and c the unit cost. We prove that, if the empirical distribution is used to esti-
mate the expected profit, this estimate exhibits a positive, statistically significant bias. We 
derive a closed-form expression for this bias that only depends on p and c and the sample 
of data. The bias expression can then be used to design an adjusted expected profit esti-
mate, which we prove is asymptotically unbiased. Numerical hypothesis testing experi-
ments confirm that the unadjusted estimation error is statistically significant, whereas the 
adjusted estimation error is not significantly different from zero. The bias is not negligible 
in our numerical experiments: For lognormally and normally distributed demand, the 
unadjusted error is 2.4% and 3.0% of the true expected profit, respectively. A more detailed 
exploration with exact finite-sample results for exponentially distributed demand demon-
strates that the estimation error percentage can be much larger.
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1. Introduction
In this note, we identify a statistically significant error in 
naively estimating the expected profit in a data-driven 
newsvendor model, and we show how to correct the 
error. In particular, we study a newsvendor model that 
applies the sample average approximation (SAA) order 
quantity, an approach that replaces the unknown true 
demand distribution with a data-driven empirical distri-
bution in the classic newsvendor formulas. We demon-
strate that estimating the maximized expected profit 
using the empirical distribution systematically overesti-
mates the true expected profit, leading a decision maker 
to believe that the expected profit is larger than it actu-
ally is. Practically speaking, the expected profit serves as 
a forecast for the future realized profit, and we effec-
tively show that this forecast is biased. We demonstrate 
how this bias can be estimated from data, which allows 
us to adjust the expected profit estimate and obtain an 
asymptotically unbiased estimate.

We rigorously prove that using the empirical distribu-
tion in place of the true distribution will lead to a positive 
bias in estimating expected profit, on average. We derive 
the asymptotic bias in closed form, which is a function 
of the sample size, the selling price and purchasing cost, 
as well as an estimate of the demand density at the 
(unknown but estimated) true optimal ordering quantity. 
Our bias formula can be used directly to adjust the empir-
ical distribution-based SAA expected profit estimate to 
obtain a new estimate that is provably asymptotically 
unbiased. We also perform numerical experiments that 
show that (1) using the empirical distribution to estimate 
expected profit leads to an expected estimation error that 
is statistically significant, and (2) our adjusted expected 
profit estimate has no statistically significant expected 
estimation error. A more detailed numerical exploration 
for exponentially distributed demand and exact finite- 
sample results demonstrates that the bias can be a large 
percentage of the true expected profit.
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1.1. Contributions
The primary contributions of our note are as follows: 

• For a generic smooth demand distribution, from 
which we have only a sample of data, we derive, using 
basic probability theory along with conditional distribu-
tion theory, the asymptotic properties of order statistics, 
and Taylor series expansions, a closed-form expression 
for the (positive) expected bias that results from estimat-
ing the expected profit using the empirical distribution 
in place of the true (unknown) distribution. This bias 
expression can be estimated in a way that only depends 
on the selling price, the purchase cost, and the sample 
data. Using the estimated bias formula, we adjust the 
empirical distribution expected profit estimate, and we 
prove that the resulting adjusted estimate is asymptoti-
cally unbiased.

• Hypothesis testing Monte Carlo simulation experi-
ments confirm our theoretical results. We demonstrate 
that the unadjusted estimation error is significantly 
positive, whereas the adjusted estimation error is not 
significantly different from zero. Notably, the unad-
justed estimation errors are 2.4%–3.0% of the true 
expected profit values in these experiments, although 
we also demonstrate that the percentage error can be 
much higher, depending on the economic parameters, 
sample size, and underlying true demand distribution. 
We also, for normal and lognormal distributions of 
demand, find that our analytical adjustments eliminate 
bias at least as well as a cross-validated estimation of 
expected profit. In other words, if cross-validation is 
applied naively, our analytical approach eliminates 
bias better. In contrast, if cross-validation is properly 
tuned (e.g., deciding the number of folds), it can match 
our ability to eliminate bias. However, we argue that our 
analytical adjustment is preferred to cross-validation 
because it (1) provides intuition about why there is a 
bias, (2) is faster than cross-validation, and (3) does not 
require proper tuning as in the cross-validation case.

1.2. Literature Review
Although there is a vast literature related to the newsven-
dor model, we focus on the most relevant data-driven 
newsvendor papers. Kleywegt et al. (2002) analyzed the 
SAA method that uses a data-driven empirical distribu-
tion in place of the unknown true distribution for general 
stochastic discrete optimization problems and identified 
a bias in estimating the optimal objective value but 
did not provide an adjustment term to correct the bias. 
Levi et al. (2007) showed that, in the newsvendor model, 
the SAA method provides a solution that is provably 
near optimal, with high probability, a result that was 
improved by Levi et al. (2015) by introducing an additive 
bias into the order quantity. Ban and Rudin (2019) further 
extended the approach of Levi et al. (2015, 2007) to 
include explanatory variables that influence the demand 
distribution using machine learning algorithms. He et al. 

(2012) similarly studied a features-based newsvendor 
model for staffing hospital operating rooms, and Ban et al. 
(2019) studied features of demand in a multiperiod inven-
tory management setting. In these references, the optimal 
expected profit depends on the true distribution, which is 
unknown, which implies that the profit is not calculable. 
Of course, the empirical distribution could be used to esti-
mate the profit in these references; we show that this esti-
mated profit is biased in the newsvendor model, and we 
also demonstrate how to correct for the bias to obtain an 
asymptotically unbiased profit estimate.

Other papers have implicitly or explicitly considered 
bias in a newsvendor context. Liyanage and Shanthiku-
mar (2005) considered the newsvendor model under an 
exponential demand distribution, where estimation (of 
the exponential distribution’s mean) and optimization 
(finding the optimal order quantity) are performed simul-
taneously, which results in the order quantity being 
intentionally biased to obtain higher expected profit in a 
data-driven context. Chu et al. (2008) consider parametric 
demand distributions characterized by location and 
scale parameters and extend the results in Liyanage and 
Shanthikumar (2005) using Bayesian analysis. Siegel 
and Wagner (2021) is the paper most related to ours, in 
that a bias in estimating profit in the data-driven news-
vendor model is identified and corrected. However, the 
methods and results presented here are considerably dif-
ferent from those of Siegel and Wagner (2021) for several 
reasons. First, Siegel and Wagner (2021) worked within a 
finite-dimensional parametric family of distributions, 
whereas our work here is nonparametric in the sense that 
we are working with only a single unknown smooth dis-
tribution with no known parametric form. Therefore, our 
work here is much more general. Next, Siegel and Wag-
ner (2021) made extensive use of the theory of maximum 
likelihood estimation to derive their results (along with 
the many required assumptions), whereas there is no cor-
responding theory available in the present nonparametric 
context; instead, we are able to (surprisingly, perhaps) 
derive our results for a single unknown distribution 
using primarily smoothness of the unknown density 
function together with conditional distribution theory 
and the asymptotic properties of order statistics.

Finally, Ito et al. (2018) study a similar problem of pro-
viding unbiased estimates of optimized objective func-
tion values, for more general optimization problems, 
except under stronger parametric and linearity assump-
tions that we do not need in our note. Furthermore, their 
results require the solutions of multiple optimization 
problems and are not closed form, which limits inter-
pretability; in contrast, our results are for an unknown 
smooth demand distribution (not restricted to any par-
ticular parametric family of distributions) in the news-
vendor model, data driven and closed form, which 
facilitates interpretability. Gupta and Rusmevichientong 
(2021) and Gupta et al. (2023) study similar parameterized 
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linear objective optimization models, focusing on small- 
data large-scale optimization and out-of-sample estima-
tion, respectively. Our results are again distinct because 
we do not require a parametric family of distributions or 
linear assumptions. Indeed, it is unclear how these mod-
els would apply to the nonlinear newsvendor problem 
under an arbitrary continuous demand distribution, the 
focus of our note.

2. Preliminaries
The newsvendor model determines an order quantity 
y that maximizes expected profit in the face of random 
demand X, where the unit sales price is p and the unit 
procurement cost is c, with p > c > 0. We assume that 
X is a continuous random variable, with continuous 
density f and cumulative distribution function F, with 
support on a nondegenerate interval within (or equal to) 
the nonnegative real numbers. We assume that all rele-
vant moments of X exist and are finite. We also assume 
that the derivative f 0 of the density is continuous and 
bounded. We make no other assumption about the dis-
tribution. In particular, we do not assume that we know 
the value of any summary statistics (mean, variance, 
etc.), and we do not assume any parametric form for the 
distribution. The only information about F will be via a 
data sample from the distribution. A note on notation: 
We denote random variables as uppercase letters and 
their realizations (or nonrandom quantities) in lower-
case letters.

If the distribution F were known, the classic newsvendor 
model is maxy�0 EF(p min{X, y}� cy), which has the 
well-known solution y⇤ à F�1(1� c=p), where 1� c=p is 
known as the critical ratio. Unfortunately, in many situa-
tions the demand distribution F is not known. Instead, 
data are typically available. In the next section, we describe 
how a data-driven newsvendor model can be formulated.

2.1. Data Perspective
In practice, one typically has access to data, which, in the 
newsvendor context, is demand data x1, : : : , xn, assumed 
here to be obtained from a random sample from F. 
Because the distribution F of demand X is not known, 
one may instead approximate F using the empirical dis-
tribution bF, which is a discrete distribution with each of 
the observations xi occurring with probability 1=n. In 
other words, the newsvendor model is approximated by

max
y�0

1
n
Xn

ià1
(p min{xi, y}� cy): (1) 

This approach is known as the SAA. Following Levi et al. 
(2007, p. 825), we define the optimal SAA order quantity 
ysaa to be

ysaa¢ min
jà1, : : : , n

xj :
1
n
Xn

ià1
Ixixj � 1� c=p

( )

, (2) 

where IA is the indicator function, which equals one 
if the event A is true and zero otherwise. In particular, 
the expression 1

n
Pn

ià1 Ixiysaa equals bF(ysaa) and approxi-
mates F(ysaa); recall that, in the newsvendor model, 
F(y⇤) à 1� c=p.
Lemma 1. Definition (2) of the optimal SAA order quan-
tity is equivalent to ysaa à x(k) with k à dn(1� c=p)e, where 
x(k) is the kth order statistic and d·e denotes the ceiling 
function.

Strictly speaking, k is a function of n; however, we will 
use the notation k instead of k(n) for simplicity.

Our note is primarily concerned with estimating 
expected profit for the ysaa order quantity. A natural 
data-driven estimate for the expected profit is to simply 
plug this order quantity into the objective of Formula-
tion (1):

1
n
Xn

ià1
(p min{xi, ysaa}� cysaa): (3) 

Our first main result is to show that this approach results 
in a biased estimate of the true expected profit; to dem-
onstrate this, we first view the data-driven problem 
from the perspective of random variables in the next sec-
tion. Our second main result is to show how to correct 
this bias to provide an asymptotically unbiased data- 
driven estimate of expected profit.

2.2. Random Variable Perspective
The SAA order quantity ysaa depends on the sample of 
data that was used to calculate it in Equation (2). We 
therefore wish to study its dependence on the sampling 
distribution. In particular, we let X1, : : : , Xn denote an 
independent identically distributed (i.i.d.) sample of size 
n from the (unknown) demand distribution F, represent-
ing a sample of past demand data. We next introduce a 
probabilistic analogue of Equation (2):

Ysaa¢ min
jà1, : : : ,n

Xj :
1
n
Xn

ià1
IXiXj � 1� c=p

( )

: (4) 

We let g and G denote the density and cumulative distri-
bution function of Ysaa, respectively (where the func-
tional forms of g and G will be given in Lemma 7). In 
Definition (4), Ysaa is a random variable that explicitly 
depends on the random sample X1, : : : , Xn. Letting 
X(1) < X(2) <⋯< X(n) denote the order statistics of the 
sample, we also provide a probabilistic analogue to the 
alternative characterization of ysaa in Lemma 1: Ysaa à X(k), 
where k à dn(1� c=p)e. Let X denote future demand, 
obtained by drawing a new observation from F, inde-
pendent of the past demand data (X1, : : : , Xn). The true 
expected profit of the SAA order quantity can be writ-
ten as

πtrue¢EF(p min{X, Ysaa}� cYsaa), (5) 
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which is the quantity we are focused on estimating 
unbiasedly. Examining Equation (3), it turns out that the 
natural estimate of expected profit associated with the 
SAA order quantity is a realization of the random vari-
able 1n

Pn
ià1(p min{Xi, Ysaa}� cYsaa), whose expectation is

πnaive¢EF
1
n
Xn

ià1
(p min{Xi, Ysaa}� cYsaa)

 !

: (6) 

We argue that this approach leads to erroneous, overly 
optimistic estimates of the true expected profit. Indeed, 
Theorem 1 implies that πnaive à Biasprofit +πtrue + o(1=n), 
where Biasprofit > 0, which demonstrates that the naive 
estimate in Equation (3) is biased upward. The expan-
sion of this equation,

EF
1
n
Xn

ià1
(p min{Xi, Ysaa}� cYsaa)

 !

à Biasprofit + EF(p min{X, Ysaa}� cYsaa) + o 1
n

◆ 
, (7) 

lends to a machine learning interpretation, in terms of 
in-sample versus out-of-sample performance. In the left 
expression of Equation (7), there are n i.i.d. realizations 
of demand X1, : : : , Xn and Ysaa, which is a function of 
these n observations, and the entire expression repre-
sents the expected in-sample maximized profit objective. 
In contrast, in the right expression of Equation (7), there 
are n + 1 i.i.d. samples, namely X1, : : : , Xn (folded into 
the definition of Ysaa), plus X, which represents future 
demand, and the term EF(p min{X, Ysaa}� cYsaa) repre-
sents the expected out-of-sample expected profit exactly 
as though it had been computed from an infinite virtual 
holdout sample (of both Xi and X); given the special 
structure of the newsvendor model, we can derive this 
result without needing an actual holdout sample.

In addition to identifying an estimation bias, we also 
show how to correct for it. In particular, in Theorem 2, 
we show that a data-driven adjustment results in 1

n
Pn

ià1 
(p min{xi, ysaa}� cysaa)� adjustment being an asymptoti-
cally unbiased estimator; in other words, we prove that 
πnaive�EF(adjustment) à πtrue + o(1=n).

Finally, we emphasize that the true expected profit 
πtrue à EF(p min{X, Ysaa}� cYsaa) is not computable because 
F is not known. However, the adjusted estimate 1

n
Pn

ià1 
(p min{xi, ysaa}� cysaa)� adjustment is computable, as it 
is based entirely on the n data observations x1, : : : , xn.

3. Naive Estimation of Expected Profit 
Exhibits Statistical Bias

In this section, we first describe the form of the bias in 
Section 3.1. We then derive the bias in Section 3.2. In Sec-
tion 3.3, we use the bias expression to adjust the naive 
expected profit formula, so that it is asymptotically unbi-
ased. Finally, in Section 3.4, we provide an intuitive 
interpretation of the bias.

3.1. Form of the Bias
The profit bias can be written as

Biasprofit¢πnaive�πtrue àEF
1
n
Xn

ià1
(pmin{Xi,Ysaa}� cYsaa)

 !

�EF(pmin{X,Ysaa}� cYsaa):

For simplicity, we cancel the EF(cYsaa) term and p multi-
plier, and we instead focus on the sales bias Biassales 
¢EF

1
n
Pn

ià1 min{Xi, Ysaa}
� ⇥

�EF(min{X, Ysaa}), where Biasprofit 
à pBiassales. We first define the sales from the naive profit 
expression in Equation (6) as S̃¢ 1

n
Pn

ià1 min{Xi, Ysaa}, 
whose expectation we decompose as follows:

EF(S̃) à EF
1
n
Xn

ià1
min{Xi, Ysaa}

 !

à EF
1
n
Xk�1

ià1
X(i) +

n + 1� k
n

◆ 
Ysaa

 !

(8) 

à k� 1
n

◆ 
EF

1
k� 1

Xk�1

ià1
X(i)

 !

+ n + 1� k
n

◆ 
EF(Ysaa), (9) 

where the second equality is due to Ysaa à X(k), and the 
final expression follows directly; the final expression is 
convenient for comparing with the sales expression 
from the exact expected profit. We next define the sales 
from the exact profit expression in Equation (5) as 
S¢min{X, Ysaa}, whose expectation we decompose as 
follows:

EF(S) à EF(min{X, Ysaa}) à P(X < Ysaa)EF(X |X < Ysaa)
+ P(X > Ysaa)EF(Ysaa |X > Ysaa)

à k
n + 1

◆ 
EF(X |X < Ysaa) +

n + 1� k
n + 1

◆ 

EF(Ysaa |X > Ysaa), (10) 

where the second equality is due to the law of total 
expectation and the final equality is due to properties of 
order statistics, as shown in Lemma 2 (presented later in 
Section 3.2.1).

Examining the expressions in Equations (9) and (10), 
we observe three discrepancies, which may be consid-
ered the three potential sources of bias. In particular, 

1. The probabilistic multipliers in Equation (9) are 
k�1

n and n+1�k
n , whereas in Equation (10), they are k

n+1 and 
n+1�k

n+1 , respectively.
2. The first expectation in Equation (9) is the uncon-

ditional EF
1

k�1
Pk�1

ià1 X(i)
⌘ ✓

, whereas in Equation (10), it 
is the conditional E(X |X < Ysaa).
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3. The second expectation in Equation (9) is the 
unconditional EF(Ysaa), whereas in Equation (10), it is 
the conditional E(Ysaa |X > Ysaa).

The cumulative effect of these discrepancies can be 
seen by examining the sales bias, which can be written 
as Biassales à EF(S̃� S). Our first result characterizes this 
bias asymptotically, with an o(1=n) error term, and we 
see that it is a positive bias; that is, the naive expected 
profit estimate is larger than and overestimates the true 
expected profit, on average. The following theorem cor-
rects for the previous discrepancies and follows immedi-
ately from Propositions 1 and 2 in the next section.

Theorem 1. The sales bias can be written as Biassales à
1

nf (y⇤)
c
p

⌘ ✓
1� c

p

⌘ ✓
+ o 1

n
� ⇥

, where y⇤ à F�1(1� c=p), and the 

profit bias can be written as Biasprofit à c
nf (y⇤) 1� c

p

⌘ ✓
+ o 1

n
� ⇥

.

3.2. Derivation of the Bias
In the following results, and proofs thereof (in the online 
appendix), we suppress the saa subscript for expository 
clarity, so that Y à Ysaa. We next decompose the true 
sales S into the sales that occur under the events of over-
age and underage, respectively: S¢min{X, Y} à XIX<Y 
+YIX>Y à Sover + Sunder, where Sover¢XIX<Y and Sunder¢ 
YIX>Y. In particular, Sover is the quantity X of items sold if 
overage occurs and is zero otherwise, and Sunder is the 
quantity Y of items sold if underage occurs and is zero 
otherwise. Similarly, we may decompose S̃¢ 1

n
Pn

ià1 
min{Xi, Y} into S̃ à S̃over + S̃under, where S̃over¢

1
n
Pk�1

ià1 X(i)

and S̃under¢
n+1�k

n
� ⇥

Y; see Equation (8). We also introduce 
the function h(y)¢

R y
0 xf (x)dx à E(XIX<y), which features 

prominently in our analyses. In particular, E(h(Y)) à
E(Sover) will be proven in Lemma 3.

Using these decompositions, we divide the evaluation 
of the sales bias into two subproblems:

Biassales à EF(S̃ � S)
à EF(S̃over � Sover) + EF(S̃under � Sunder), (11) 

where EF(S̃over� Sover) is the sales bias due to overage 
and EF(S̃under� Sunder) is the sales bias due to underage.

3.2.1. Auxiliary Results to Prove Theorem 1. In this 
section, we provide a series of auxiliary results that 
are needed to prove our main propositions, which in 
turn are used to prove Theorem 1. We make use of the 
representations Xi à F�1(Ui), X à F�1(U), X(i) à F�1(U(i)), 
Y à X(k) à F�1(U(k)), and F(Y) à U(k) where F�1 denotes 
the inverse function of F, U1, : : : , Un is an i.i.d. sample from 
the uniform distribution on the interval (0, 1), and U is 
independent of U1, : : : , Un from the same uniform 
distribution.

Our proof techniques use Taylor series expansions 
extensively, both for random variables as well as 

deterministic functions (e.g., expectations). When ana-
lyzing deterministic functions, we characterize the finite 
expansions’ errors precisely using asymptotic notation 
(e.g., O(1=n) or o(1=n)). When expanding random vari-
ables, we use ⇡ to represent a Taylor Series expansion 
up to a specified degree; however, once we take expecta-
tions of these random variable expansions, we again 
characterize their errors analytically.

The diagram in Figure 1 presents a graph theoretic 
perspective of the dependencies between the various 
lemmas (labeled L) and propositions (labeled P), which 
ultimately lead to proving Theorem 1, one of the main 
contributions of our note. In particular, a directed arrow 
from, say, node L2 to L4 signifies that Lemma 2 is used 
to prove Lemma 4. Propositions 1 and 2 characterize the 
sales bias under the cases of overage and underage, 
respectively. These two propositions then lead naturally 
to Theorem 1, which characterizes the overall profit bias.

Lemma 2 applies concepts from order statistics to char-
acterize many useful quantities about the SAA order 
quantity Y à X(k) and, as is evident from Figure 1, influ-
ences many of the subsequent lemmas that are needed to 
prove Theorem 1.

Lemma 2. Here are some basic facts about the order quantity 
Y à X(k) and the independent future demand observation X. 

• The probability of underage P(X > Y) à (n + 1� k)=
(n + 1).

• The probability of overage P(X < Y) à k=(n + 1).
• The expectation of the CDF evaluated at the order quan-

tity is E[F(Y)] à k=(n + 1).
• The variance of the CDF evaluated at the order quan-

tity is Var[F(Y)] à Var(U(k)) à k(n + 1� k)=[(n + 1)2(n + 2)] à
O 1

n
� ⇥

.
• The expectation of the order quantity is E(Y) à F�1 

k
n+1
� ⇥

� f 0{F�1[k=(n+1)]}
2f 3{F�1[k=(n+1)]}

k(n+1�k)
(n+1)2(n+2) + o 1

n
� ⇥

.
• The variance of the order quantity is Var(Y) à

k(n+1�k)
{f [E(Y)]}2(n+1)2(n+2) + o 1

n
� ⇥

à O 1
n
� ⇥

.

Lemma 3 characterizes some expansions of h(Y) àR Y
0 xf (x)dx à E(XIX<Y), where E(h(Y)) à E(Sover). The first 

Figure 1. Dependencies Among Lemmas, Propositions, and 
Theorem 1
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expansion is of a random variable, and we do not char-
acterize the random error term, but the second two 
expressions (which use the first) are expectations, and 
we characterize the error terms precisely.

Lemma 3. Here are some basic facts about h(y)¢E(XIX<y)
à
R y

0 xf (x)dx. 
• To first order, h(Y) ⇡ h[E(Y)] + E(Y){F(Y)� F[E(Y)]}.
• The covariance of h with F, as functions of the order 

quantity, is Cov[h(Y), F(Y)] à E(Y)Var[F(Y)] + o 1
n
� ⇥

.
• The expected ratio of h to F is E h(Y)

F(Y)

⌘ ✓
à
�
1+

Var[F(Y)]
{E[F(Y)]}2

✓
E[h(Y)]
E[F(Y)]�

Var[F(Y)]
{E[F(Y)]}2 E(Y) + o 1

n
� ⇥

.
• The expected value of h(Y) is E[h(Y)] à E(Sover).
The next three lemmas use basic algebraic manipula-

tions to simplify some expressions that are functions of 
k à dn(1� c=p)e.

Lemma 4. This expression will assist in establishing negli-
gibility of some terms in the proof of Proposition 1. 
1 + Var[F(Y)]

{E[F(Y)]}2� nE[F(Y)]
k�1 à O 1

n2

� ⇥
.

Lemma 5. These ratios involving k may be expressed in 
terms of the critical ratio as follows: k

n à 1� c
p + O 1

n
� ⇥

, 
k

n+1 à 1� c
p + O 1

n
� ⇥

, and n+1�k
n � n+1�k

n+1 à n+1�k
n(n+1) à 1

n
c
p

⌘ ✓
+

O 1
n2

� ⇥
.

Lemma 6. The following is instrumental in establishing 
Proposition 1: k�1

n
Var[F(Y)]
{E[F(Y)]}2 à 1

n
� c

p
⇥
+ O 1

n2

� ⇥

Lemma 7 derives the conditional densities of the SAA 
order quantity Y, given the events of overage and under-
age, respectively, along with the unconditional density 
and CDF of Y. These results are used to characterize the 
conditional expected sales when overage occurs, which 
is used in Lemma 8, which, in turn, is used in the proof 
of Proposition 1. These conditional densities of the SAA 
order quantity may also be of independent interest; 
hence, we also include the underage case.

Lemma 7. The conditional densities of Y given overage 
and given underage are as follows: 

• The conditional density of Y given overage X<Y is 
gX<Y(y) à F(y)g(y)

P(X<Y),

• The conditional density of Y given underage X>Y is 
gX>Y(y) à [1�F(y)]g(y)

P(X>Y) ,
• The unconditional density g of Y is g(y) à n!

(k�1)!(n�k)!
[F(y)]k�1[1� F(y)]n�kf (y),

• The unconditional CDF G(y) of Y is given by the incom-
plete beta function with parameters k and n + 1� k evaluated 
at F(y), where g denotes the unconditional density of Y.

Lemma 8 analyzes expressions that are related to the 
differences between Equations (9) and (10), the naive 
and true profit estimations discussed in Section 3.1. Per 

Figure 1, Lemma 8 is the final auxiliary result needed to 
prove the overage sales bias result in Proposition 1 (pre-
sented in the next section).
Lemma 8. The following are relevant to understanding the 
case of overage: 

• This is the conditional expectation of demand, given 
overage with respect to a constant order quantity. 
E( 1

k�1
Pk�1

ià1 X(i) |Y à y) à E(X |X < y) à h(y)
F(y) is an increasing 

function of y.
• This shows that the expected conditional expectation of 

demand in overage (given the order quantity Y) is smaller 
than the conditional expectation of demand given overage. 
E 1

k�1
Pk�1

ià1 X(i)
⌘ ✓

à E h(Y)
F(Y)

⌘ ✓
< E(X |X < Y) à E[h(Y)]

E[F(Y)].
• This same expectation is related to the expected sales in 

overage as follows: k
n+1 E 1

k�1
Pk�1

ià1 X(i)
⌘ ✓

< E[XIX<Y] à
E[h(Y)] à E(Sover).

Lemma 9 builds on Lemma 2 and provides alternate 
expressions for certain functions of Y needed for deriving 
the underage sales bias result in Proposition 2 (presented 
in the next section).
Lemma 9. The following are additional facts about F(Y): 
E[F(Y)]� k�1

n à 1
n

c
p

⌘ ✓
+ O 1

n2

� ⇥
, Var[F(Y)] à 1

n
c
p

⌘ ✓
1� c

p

⌘ ✓
+

O 1
n2

� ⇥
, and E({F(Y)� F[E(Y)]}2) à Var[F(Y)] + O 1

n2

� ⇥
.

Lemma 10 is the auxiliary result that identifies the 
form of the sales bias, which interestingly equals (asymp-
totically) the covariance between the SAA order quantity 
Y and its percentile F(Y). Per Figure 1, Lemma 10 is only 
used to prove the underage sales bias result in Proposi-
tion 2, and we learn that the overall profit bias is driven 
primarily by the underage sales bias; more discussion on 
this observation is provided in the next section.
Lemma 10. The covariance of the order quantity with its 
CDF is Cov[Y, F(Y)] à 1

nf [E(Y)]
c
p

⌘ ✓
1� c

p

⌘ ✓
+ o 1

n
� ⇥

.
Lemma 11 is the final auxiliary result needed to prove 

Proposition 2 and demonstrates that the SAA order 
quantity Y is an (asymptotically) unbiased and consis-
tent estimator of the true optimal order quantity y⇤ à F�1 

(1� c=p).
Lemma 11. Considering the true (unknown) optimal order 
quantity y⇤ à F�1(1� c=p), we have E(Y)! y⇤, and that Y 
is a consistent estimator of y⇤.

3.2.2. Main Propositions. The following two proposi-
tions provide the formulas for the asymptotic biases of 
the two components of the sales bias.
Proposition 1. The sales bias in overage is E(S̃over)�
E(Sover) à� 1

n
c
p

⌘ ✓
E(Y) + o 1

n
� ⇥

.

Proposition 2. The sales bias in underage is E(S̃under)�
E(Sunder) à 1

n
c
p

⌘ ✓
E(Y) + 1

nf (y⇤)
c
p

⌘ ✓
1� c

p

⌘ ✓
+ o 1

n
� ⇥

.
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Together, Propositions 1 and 2 imply Theorem 1, due 
to Equation (11). Interestingly, the 1n c

p

⌘ ✓
E(Y) term is com-

mon to the bias expressions in both the overage and 
underage cases, which cancel, and the overall sales bias is 
driven solely by the additional term in the underage sales 
bias. Fortunately, after this cancellation, all terms in the 
bias expression are known, except f (y⇤), which we 
address in the next section.

3.3. Correcting for the Bias
The sales bias Biassales à 1

nf (y⇤)
c
p

⌘ ✓
1� c

p

⌘ ✓
+ o 1

n
� ⇥

from The-
orem 1 may be asymptotically unbiasedly estimated 
using dBiassales à 1

nbf
c
p

⌘ ✓
1� c

p

⌘ ✓
, where bf is a consistent 

estimate of the density f at E(Y). To estimate the density 
term f (y⇤), we use the fact that f à F0 to allow us to take a 
numerical derivative of the empirical CDF using two- 
order statistics with one on each side of Y à X(k). Choos-
ing order statistics symmetrically placed at ranks k � m 
and k + m with integer m > 0, we note that the empirical 
CDF increases by 2m=n as the density’s argument 
increases from x(k�m) to x(k+m). We therefore define our 
estimate as

bf ¢ 2m
n(x(k+m)� x(k�m))

: (12) 

To see that 1=bf is a consistent estimate of 1=f (y⇤) in the 
bias equation, we rely on equations (8) and (9) and theo-
rem 1 of Tusnády (1974), where Tusnády’s k corre-
sponds to our 2m. Thus, bf is a consistent estimator of 
f (y⇤) because the density is being estimated at Y à X(k)
with (from Lemma 11) E(Y)! y⇤ and (from Lemma 2) 
Var(Y) à O(1=n). That a continuous function (in this 
case, the reciprocal) of a consistent estimator is itself con-
sistent follows, for example, from the theorem on p. 24 
of Serfling (1980). Thus, we also have that 1=bf is a consis-
tent estimator of 1=f (y⇤) as required. Tusnády’s work 
was extended by Barabás (1987), who shows on p. 122 
that, asymptotically, the best choice for m is m ~ Cn2=3, 
which represents a compromise between a larger m with 
less density estimation variability and a smaller m with 
less bias; in particular, with this choice for m we have 
both m !1 (so that many data points fall within the 
interval from X(k�m) to X(k+m)) and m=n ! 0 (so that the 
interval tends to a single point). These results show that 
the bias estimate is asymptotically unbiased, as stated in 
the following proposition.
Proposition 3. The estimated sales bias is an asymptoti-
cally unbiased estimator of the true sales bias, in the sense 
that E[dBiassales] à Biassales + o 1

n
� ⇥

.
Using these results, we can create an adjusted sales 

estimate that is asymptotically unbiased. In particular, 
referring to Equation (3), we define bSadjusted¢

1
n
Pn

ià1 

min xi, ysaa
 ⌦

�dBiassales, where xi, i à 1, : : : , n, is the real-
ized sample of demand and ysaa is the realized SAA 
order quantity. Similarly, an adjusted profit estimate is 
defined as

bπadjusted¢
1
n
Xn

ià1
(pmin{xi,ysaa}� cysaa)�pdBiassales: (13) 

Because we demonstrated in Section 3.1 that the profit 
bias is driven solely by the sales bias, Proposition 3
implies that the adjusted profit estimate in Equation (13) 
is also asymptotically unbiased, which we present in the 
following theorem.
Theorem 2. The bias-adjusted estimated profit is an 
asymptotically unbiased estimate of the true profit, in the 
sense that E(bπadjusted) à πtrue + o(1=n).

3.4. Interpretation of the Bias
In this section, we interpret the bias and show that its 
dominant source is underage. We begin by showing that 
the canceling terms 6 1

n
c
p

⌘ ✓
E(Y) (negative for the bias in 

overage from Proposition 1, positive in underage from 
Proposition 2) are artifacts due to an error of estimation 
of the probabilities of overage and underage as com-
puted within-sample by the naive newsvendor. After 
correcting for this estimation error, we show that the 
asymptotic bias from Theorem 1 is due entirely to under-
age. We then understand the bias as a mathematical con-
sequence of the sign of the covariance of the SAA order 
quantity Y with a monotonic function of itself F(Y).

3.4.1. Bias Is due to Underage Only. The naive sales 
estimate in underage is S̃under à n+1�k

n
� ⇥

Y (c.f., the begin-
ning of Section 3.2), which may be interpreted as the 
within-sample estimated probability of underage, n+1�k

n , 
times the sales Y that would occur with this order quan-
tity when underage occurs. However, the true probabil-
ity of underage is actually the slightly smaller n+1�k

n+1 from 
Lemma 2. We correct this estimation error by defining 
the probability-adjusted naive sales estimate in underage 
given Y to be an O(1=n) perturbation of S̃under formed by 
replacing the within-sample estimate with the true prob-
ability as follows: S̃under, ProbAdj¢

n+1�k
n+1

� ⇥
Y à S̃under� n+1�k

n(n+1)

⌘ ✓
Y. 

The effect of this adjustment on the bias in underage 
may be computed as follows:
E(S̃under, ProbAdj)�E(Sunder) à [E(S̃under, ProbAdj)�E(S̃under)]

+ [E(S̃under)�E(Sunder)]

à n + 1� k
n + 1 � n + 1� k

n

◆ 
E(Y)

+ [E(S̃under)�E(Sunder)]:
Using the third assertion of Lemma 5 for the first term 
and Proposition 2 for the second term, we find the bias 
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of the probability-adjusted sales in underage to be

E(S̃under, ProbAdj)� E(Sunder)

à � 1
n

c
p

◆ 
+ O 1

n2

◆ � �
E(Y)

+ 1
n

c
p

◆ 
E(Y) + 1

nf (y⇤)
c
p

◆ 
1� c

p

◆ 
+ o 1

n

◆ � �

à 1
nf (y⇤)

c
p

◆ 
1� c

p

◆ 
+ o 1

n

◆ 
, 

which we recognize as the full sales bias from Theorem 1
(which combines underage and overage biases). The 
probability adjustment has eliminated the canceling term 
6 1

n
c
p

⌘ ✓
E(Y) from the bias in underage.

To preserve the naive estimate in totality, having sub-
tracted n+1�k

n(n+1)

⌘ ✓
Y from S̃under to obtain S̃under, ProbAdj, we 

must add n+1�k
n(n+1)

⌘ ✓
Y to S̃over to obtain the probability- 

adjusted naive sales estimate in overage given Y as 
S̃over, ProbAdj¢S̃over + n+1�k

n(n+1)

⌘ ✓
Y à 1

n
Pk�1

ià1 X(i) + n+1�k
n(n+1) X(k), which 

is not (strictly speaking) a pure probability adjustment 
but, instead, is the required adjustment implied by the 
probability adjustment made in underage. The resulting 
term S̃over, ProbAdj may be interpreted as adding a small 
fraction of X(k) to the overstock estimate S̃over. Adding 
this small fraction of order O(1=n) greatly simplifies the 
bias interpretation because we now have asymptotic 
bias zero, plus o(1=n), in overage. To see this, we use the 
third assertion of Lemma 5 for the first term and Propo-
sition 1 for the second term and find the bias of the 
probability-adjusted sales in overage to be

E(S̃over, ProbAdj)�E(Sover)

à n + 1� k
n(n + 1)

◆ 
E(Y) + [E(S̃over)�E(Sover)]

à 1
n

c
p

◆ 
+ O 1

n2

◆ � �
E(Y)

+ � 1
n

c
p

◆ 
E(Y) + o 1

n

◆ � �
à o 1

n

◆ 
:

Thus, the dominant bias is due entirely to underage 
after the probability adjustment: E(S̃)�E(S) à 1

nf (y⇤)
c
p

⌘ ✓

1� c
p

⌘ ✓
+o 1

n
� ⇥

à E(S̃under, ProbAdj)�E(Sunder).

3.4.2. Interpreting the Bias as a Covariance. Our inter-
pretation of the bias is as a mathematical consequence of 
the sign of the covariance Cov[Y, F(Y)] > 0 of the SAA 
order quantity Y with F(Y), which is a monotonically 
increasing function of its argument Y. This covariance 
emerges from using iterated expectations, first condi-
tioning on Y, and then using the definition of covariance 

to obtain the true expected sales in underage as follows:
E(Sunder) à E(YIX>Y) à E[E(YIX>Y |Y)] à E{Y[1� F(Y)]}

à E[1� F(Y)]E(Y) + Cov{Y, [1� F(Y)]}:

Next, using Lemma 2 for E[F(Y)] and recognizing that 
additive constants within a covariance are irrelevant, we 
find E(Sunder) à n+1�k

n+1
� ⇥

E(Y)�Cov[Y, F(Y)] à E(S̃under, ProbAdj)
�Cov[Y, F(Y)], which implies that the bias E(S̃under, ProbAdj)
�E(Sunder) à Cov[Y, F(Y)] is positive because F(Y) is 
monotonically increasing in Y.

4. Exact Results for an Exponential 
Distribution of Demand

In this section, we derive exact formulas for the expected 
true profit, the expected naive profit, and the bias, when 
the SAA order quantity is used under the assumption 
that F is an exponential distribution with mean µ. The 
following proposition provides the closed-form expres-
sions for these quantities.

Proposition 4. Exact expressions for the expected true 
profit πtrue, the expected naive profit πnaive, and the bias 
Biasprofit, when F is an exponential distribution with mean 
µ, are as follows: πtrue à µ pk

n+1� c
Pn

iàn+1�k
1
i
� ⇥h i

, πnaive à

µ pk
n � c

Pn
iàn+1�k

1
i
� ⇥h i

, Biasprofit à pkµ
n(n+1).

To prove Proposition 4, we first need the following 
lemma.

Lemma 12. When F is an exponential distribution with 
mean µ, the following expectations hold exactly: E[min 
(X, Y)] à µ k

n+1
� ⇥

, E(Y) à µPn
iàn+1�k

1
i
� ⇥

, E(Pk�1
ià1 X(i)) à µ

k� (n + 1� k)Pn
iàn+1�k

1
i
� ⇥� ⇥

.

To compare the exact result Biasprofit à pkµ
n(n+1) for the 

exponential distribution to our general asymptotic result 
Biasprofit à p

nf (y⇤)
c
p

⌘ ✓
1� c

p

⌘ ✓
+ o 1

n
� ⇥

, we now show that 
they are equal in the exponential case, although techni-
cally we have already proven this in the general case. 
Nonetheless, it is of interest to see how the reciprocal of 
the density produces the scale factor µ for the exact bias 
in the exponential case.
Proposition 5. The exact profit bias for the exponential dis-
tribution is equal to the general asymptotic profit bias for-
mula in the sense that Biasprofit à pkµ

n(n+1) à
p

nf (y⇤)
c
p

⌘ ✓
1� c

p

⌘ ✓

+ o 1
n
� ⇥

.

We conclude this section by evaluating the size of the 
bias, with respect to the true expected profit. In the left 
plot of Figure 2, we present Biasprofit as a percentage of 
πtrue, as a function of the sample size n, for p à 5 and c à 3; 
we obtain qualitatively similar results for different 
values of p and c. We see that, especially for small 
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values of n, the percentage is large, which then gener-
ally decreases as the sample size increases. In the right 
plot of Figure 2, we present the bias percentage as a 
function of c/p for n à 25; again, qualitatively similar 
plots are obtained for different values of n. Here, we 
see that the bias percentage increases with c/p. In both 
plots, the jagged nature of the lines is due to the value 
of k changing (Lemma 1).

We conclude this section by pointing out that Siegel 
and Wagner (2021) also derived an analytical estimate of 
the bias for exponentially distributed demand, except 
under the assumption of a parametric demand distribu-
tion. Unfortunately, comparing the bias expressions 
does not lead to an easy analytical conclusion. Conse-
quently, we performed numerical experiments, similar to 
those herein, that demonstrate that the profit estimation 
bias is smaller when there is parametric information avail-
able (i.e., the fact that demand is exponentially distributed). 
Intuitively, more information (the parametric form of 
the distribution) leads to better decision making and 
hence less bias. However, despite the nonparametric 
environment (the focus of our note) exhibiting more 
bias, our data-driven profit adjustment performs as 
well as that of Siegel and Wagner (2021).

5. Numerical Experiments to Evaluate the 
Adjusted Profit’s Bias Reduction

Simulations were performed for the normal and lognor-
mal demand cases, and considerable expected estima-
tion error reduction was observed using our proposed 
adjustment in Equation (13), which empirically verifies 
Theorem 2 for these distributions.

Our experimental primitive is as follows: we generate 
a sample of n à 25 observations xi from the true distribu-
tion, from which we obtain the order size y à x(k). We 
then compute both the naive and the adjusted expected 
profit, as perceived by the newsvendor for this sample. 
To improve the efficiency of the Monte Carlo simula-
tions, we decrease the noise involved in computing 

the true profit as follows: Instead of generating a new 
observation x from the true distribution and using 
pmin(x, y)� cy, we use analytical expressions for the 
conditional expectation of the true profit given y, namely 
pEF[min(X, y)]� cy, where X is drawn from the true dis-
tribution and y is held fixed at its value for this sample. 
For the normal distribution X ~ N(µ,σ2), this condi-
tional expectation is p y� σ� y�µ

σ

� ⇥
� (y�µ)Φ y�µ

σ

� ⇥⇤ ⌅
� cy, 

which may be derived using basic probability theory. 
Similarly, for the lognormal distribution X à eµ+σZ, with 
standard normal Z, the conditional expectation is 
p eµ+σ2=2Φ ln y�µ

σ � σ
⌘ ✓

+ y 1�Φ ln y�µ
σ

⌘ ✓h in o
� cy.

The estimation error before adjustment is formed by 
subtracting the conditional expectation (of the true 
profit) from the naive estimate, where both were formed 
from this sample. Similarly, the estimation error after 
adjustment is formed by subtracting the conditional 
expectation (of the true profit) from the adjusted esti-
mate, again, where both were formed from this sample. 
We compute the t statistic (testing against zero estima-
tion error) for each measure (naive and adjusted) by 
repeating this procedure for 10,000 independent sam-
ples, each of size n à 25. The result is a pair of t statistics 
for the expected estimation error: one before and one 
after adjustment. We then repeat this procedure 100 
times to obtain 100 pairs of t statistics, each based on 
10,000 simulations.

In Figure 3, we plot histograms of these 100 paired t sta-
tistics for the normal (left) and lognormal (right) distribu-
tions. For both distributions, we set the mean at 200 and the 
standard deviation at 65; in the normal case, we set µ à 200 
and σ à 65, whereas the lognormal case uses µ à 5:248112 
and σ à 0:316877 so that its mean will be E(X) à eµ+σ2=2 à
200 and its standard deviation will be StDev(X) à
eµ+σ2=2

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
eσ2 � 1

p
à 65. For estimating the density in Equa-

tion (12), we use m à 2, which is consistent with the m ~ 
Cn2=3 recommendation from Barabás (1987), for n à 25 
and C à 1/4. In both cases, we set p à 5 and c à 3.

Figure 2. Bias as a Percentage of the True Expected Profit for Exponentially Distributed Demand 

Notes. (Left) Percentage as a function of the sample size n for p à 5 and c à 3. (Right) Percentage as a function of c/p for n à 25.
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We observe strong evidence that our asymptotic 
adjustment eliminates the statistically significant estima-
tion error very effectively even in these finite samples. 
As shown in Figure 3, for both the normal and the log-
normal distributions, the unadjusted estimation error 
shows high statistical significance (i.e., the t values in the 
histograms before adjustment are considerably higher 
than the standard 1.96 critical value), which is success-
fully eliminated by the asymptotic correction (i.e., the 
histogram after adjustment is centered close to zero). For 
normal demand, the expected profit is 270.4, and the 
expected estimation error is 8.0, which is a nonnegligible 
3.0% of the true expected profit. For lognormal demand, 
the expected profit is 280.9, and the expected estimation 
error is 6.8, which is 2.4% of the true expected profit.

We repeated these experiments with smaller values of 
c, which results in larger newsvendor quantiles 1� c=p; 
these larger quantiles might have caused difficulties 
in estimating f (y⇤), but the experimental results (omit-
ted for brevity) were qualitatively identical to those in 
Figure 3.

5.1. Comparison with Cross-Validation
In the language of machine learning, we use our sample 
of data (X1, : : : , Xn) as a training data set to calculate Ysaa. 
However, evaluating the performance (i.e., expected 
profit) of an algorithm on the same data used to train it 
is a mistake. Typically, in machine learning, data are 
split into training and testing data sets. The training data 
set would be used to calculate Ysaa and then the testing 
data set would be used to estimate the expected profit. 
Of course, this expected profit estimation would depend 
on the random split of the data into training and testing 
data sets. A better approach is to use cross-validation to 
estimate the expected profit. In, say, fivefold cross- 
validation, the data are split into five equally sized sets, 

or folds, of data. Each of the folds serves as a testing data 
set, with the remaining four folds serving collectively 
as the training data. Averaging the five test data set 
expected profit estimations results in the cross-validated 
estimate of expected profit. Cross-validation is one of 
the standard approaches in machine learning to estimate 
the performance of an algorithm on new data. In this 
section, we examine how cross-validation performs 
with respect to our bias adjustment.

We reuse the hypothesis-testing experimental design 
of this section, where we add the t statistic histograms 
for fivefold cross-validated estimated expected profits 
for sample sizes n 2 {25, 250, 500} and leave-one-out 
cross-validation for n à 25. We report our findings in 
Figure 4 for normally distributed demand; we observe 
qualitatively similar results for lognormally distributed 
demand, which we omit for brevity.

We see that fivefold cross-validation (in green, on left) 
significantly reduces bias compared with the unadjusted 
expected profit (in red, on right), as expected, but does 
not eliminate the bias for smaller sample sizes. For the 
smaller sample sizes, our analytical bias adjustment 
reduces bias better than cross-validation: observe that 
the histograms for our bias-adjusted expected profits (in 
blue, in middle) are centered more closely around zero, 
whereas the cross-validated histograms are centered to 
the left of zero, indicating that cross-validation actually 
overcompensates and results in a negative bias. How-
ever, leave-one-out cross-validation performs as well as 
our analytical correction for small samples sizes, as does 
fivefold cross-validation on larger sample sizes. Thus, 
applied properly, cross-validation can match the bias 
elimination of our analytical correction. However, we 
argue that our analytical adjustment is preferred to 
cross-validation because it (1) provides intuition about 
why there is a bias (see the discussion of underage and 

Figure 3. (Color online) Adjustment Eliminates Bias for Normal and Lognormal Demand 

Note. Normal distribution (left) and lognormal distribution (right) both have mean 200 and standard deviation 65, with p à 5, c à 3, and sample 
size n à 25.
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covariance in Section 3.4), (2) is faster than cross- 
validation (the calculation of the adjustment is effec-
tively instantaneous), and (3) does not require proper 
tuning as in the cross-validation case (e.g., selecting the 
right number of folds versus leave-one-out cross- 
validation).

6. Conclusion
In this note, we identify a statistically significant error in 
naively estimating the expected profit in a data-driven 
newsvendor model, and we show how to correct the 
error while assuming only a smooth density, without 
parametric assumptions. In particular, we analyze a news-
vendor model, where the SAA order quantity is calcu-
lated by substituting the empirical demand distribution, 
generated by a sample of demand data, for the unknown 
true distribution. We prove that using the same empirical 
distribution to estimate the expected profit of the SAA 
order quantity results in a positive asymptotic bias, which 
we derive in closed form. Furthermore, we provide an 

in-depth interpretation of the bias, connecting it mathe-
matically with a covariance term. The bias expression 
allows us to adjust the expected profit estimate to obtain 
an asymptotically unbiased expected profit estimate 
using only information from the sample, whereas the 
true distribution remains unknown. The bias is nonne-
gligible: In our numerical experiments, which demon-
strate that the estimation error is statistically significant 
and the adjusted estimation error is generally not signif-
icantly different from zero, the bias is approximately 
2.4%–3.0% of the true expected profit, when demand is 
generated by a lognormal and normal distribution, 
respectively. Exact numerical experiments for exponen-
tially distributed demand demonstrate that the bias can 
be a much larger percentage of the true expected profit. 
We also interpret our results intuitively: Although over-
age contributes negative sales bias, underage contributes 
a larger magnitude of positive sales bias, which domi-
nates. This implies that the positive profit bias is due to 
underage.

Figure 4. (Color online) Our Analytical Adjustment Compared with Cross-Validation for Normally Distributed Demand with 
Mean 200, Standard Deviation 65, and p à 5, c à 3 

Note. The types of cross-validation (CV) and sample sizes are as follows: (top left) fivefold CV and n à 25, (top right) fivefold CV and n à 250, 
(bottom left) fivefold CV and n à 500, (bottom right) leave-one-out CV and n à 25.

Siegel and Wagner: Data-Driven Profit Estimation Error in the Newsvendor Model 
Operations Research, Articles in Advance, pp. 1–12, © 2023 INFORMS 11 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[2

60
1:

60
0:

90
80

:f7
2:

2c
bf

:b
04

e:
44

40
:a

98
b]

 o
n 

09
 A

ug
us

t 2
02

3,
 a

t 0
8:

27
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



We conclude by briefly discussing future research 
directions. First, our results could potentially be extended 
to a contextual newsvendor model, where a demand 
observation X is paired with a contextual vector Z à (Z1, 
: : : , Zm). A machine learning model could be used to pre-
dict the distribution of X from Z. If such a prediction 
model provides an empirical demand distribution, condi-
tional on Z, then the newsvendor could set Ysaa to the 1�
c=p quantile of this conditional distribution. Ban and 
Rudin (2019) and Bertsimas and Kallus (2020) study simi-
lar models from a variety of perspectives but do not cor-
rect for any biases.
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