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Abstract. We consider the newsvendor model in which uncertain demand is assumed to
follow a probabilistic distribution with known functional form but unknown parameters.
These parameters are estimated, unbiasedly and consistently, from data. We show that the
classic maximized expected profit expression exhibits a systematic expected estimation
error. We provide an asymptotic adjustment so that the estimate of maximized expected
profit is unbiased. We also study expected estimation error in the optimal order quantity,
which depends on the distribution: (1) if demand is exponentially or normally distributed,
the order quantity has zero expected estimation error; (2) if demand is log-normally
distributed, there is a nonzero expected estimation error in the order quantity that can be
corrected. Numerical experiments, for light- and heavy-tailed distributions, confirm our
theoretical results.
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1. Introduction
In this paper, we show that the classic newsvendor
model can systematically overestimate its maximized
expected profit; in other words, the expected profit
perceived by a decisionmaker can be larger on average
than what actually occurs. In practice, the expected
profit serves as a forecast for the future realized profit,
and we effectively show that this forecast is biased.
The American Production and Inventory Control
Society (APICS), a worldwide professional organiza-
tion founded in 1957 with more than 45,000 members,
specifies that “a normal property of a good forecast is
that it is not biased” (APICS 2019). Similarly, the
Institute of Business Forecasting and Planning pro-
vides resources for measuring and correcting fore-
casting bias (Singh 2017). IBM has also provided
guidance on correcting forecasting bias (Parks 2018),
which is summarized as “error isn’t always address-
able but bias usually is. Consider focusing on bias first
when trying to improve your forecasts.” An article
discussing the correction of forecasting bias has also
appeared on LinkedIn (Bentzley 2017), and it con-
cludes by stating, “By. . .driving relentlessly until the
forecast has had the bias addressed. . .the organiza-
tion can make the most of its efforts and will continue
to improve the quality of its forecasts and the supply

chain overall.” Academic research has also identified
the costs of positive and negative bias: Cassar and
Gibson (2008) report, “Higher costs of obsolescence
and inventory holding (Lee and Adam 1986, Watson
1987) and lower returns on capital investments may
result from optimistic forecasts, while stock-out costs
and reputation damage are likely consequences of
pessimistic forecasts (Ittner and Larcker 1998, Durand
2003).” Furthermore, Lipson (2019) is a University of
Virginia case study that teaches financial statement
forecasting and states that forecasts should be unbi-
ased (neither optimistic nor pessimistic) because bi-
ased forecasts lead to biased decisions. More infor-
mally, if a manager chronically overestimates profit,
eventually it will be noticed that the errors cannot
be solely attributed to forecasting error but rather
to mistaken calculations (i.e., forecasting bias). In
this paper, we provide an approach to correct these
mistaken calculations in the context of the news-
vendor model and produce bias-adjusted forecasts
of profit.
As a concrete example of the need for unbiased

forecasts, we summarize the case of a large Cali-
fornian consumer electronics firm, disguised as “Lei-
tax,” as reported in Oliva and Watson (2009). This
paper categorizes forecast biases as either intentional
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(driven by misaligned incentives, politics, etc.) or
unintentional (resulting from procedural and infor-
mational blind spots). The authors discuss the imple-
mentation at Leitax of a coordination system to address
these biases, which results in an increase of forecasting
accuracy, defined as one minus the ratio of the absolute
deviation of sales from forecast to the forecast itself
from 58% to 88%. These forecasting improvements di-
rectly enhance operational outcomes: average on-hand
inventory decreases from $55 million to $23 million, and
excess and obsolescence costs decrease from an average
of $3 million per year to practically zero. However, this
paper is silent on statistical bias in forecasts (a form of
unintentional procedural bias), which is the focus of
our research and can supplement the coordination
system presented in Oliva and Watson (2009).

We study a scenario in which the demand distri-
bution is specified by a finite number of parameters
(e.g., mean, standard deviation) that are estimated
from data. Even though we utilize unbiased and
consistent estimators, when fed through the optimi-
zation operator of the newsvendor model, an incor-
rect estimation of the optimized expected profit mate-
rializes. We derive this asymptotic expected estimation
error in closed form for a generic continuous demand
distributionwith k parameters that are estimated from
data. We also design an adjustment term, which ac-
counts for estimation error distortions, that provides
an unbiased estimation of the maximized profit (as-
ymptotically to second order) that more accurately
reflects actual realized profit. We also summarize
experiments that show that (1) the expected estima-
tion error is statistically significant, and (2) our ad-
justed profit has no statistically significant expected
estimation error. Finally, we also consider expected
estimation error in the order quantity and derive its
general asymptotic functional form; in particular, we
show that (1) when demand is exponentially or nor-
mally distributed, the order quantity has no expected
estimation error, and (2) when demand is log-normally
distributed, the order quantity has a expected estimation
error that can be corrected.

We provide the following numerical example, moti-
vated by valuing reactive capacity in a newsvendor con-
text, which illustrates the practical benefits of our research.

Example 1. Consider a newsvendor situation in which
the unit selling price p � 100, the unit procurement cost
c � 40, and demand is exponentially distributed with a
mean θ � 200. Suppose that we have the following 10
sample demands from this distribution {217, 444, 148,
219, 251, 126, 28, 32, 210, 147}, which lead to an esti-
mated mean θ̂ � 182.15. Using an estimated exponential
distribution with mean θ̂ � 182.15, the optimal news-
vendor order quantity is 167, which results in an es-
timated expected profit of $4,253. Reactive capacity, as

described in section 13.4 of Cachon and Terwiesch
(2012), results in the opportunity to place a second
order at a higher cost once demand is realized to
satisfy any unmet demand from the first order; we
assume that utilizing reactive capacity requires a fixed
cost of $5,500 and a per-unit premium of 20% so that
the unit cost of reactive capacity is (1 + 20%)c � 48.
Applying the analysis from section 13.4 of Cachon
and Terwiesch (2012) with the estimated exponential
distribution with mean θ̂ � 182.15, we calculate that
we should order 33 units in the original order and
utilize reactive capacity for any demand in excess
of 33, which results in an expected profit of $4,100.
Therefore, we conclude that reactive capacity is not
worth it ($4,100 < $4,253). But this would be wrong.
Using the exact exponential distribution with mean
θ � 200, the nonreactive and reactive expected profits
are $4,670 and $5,041, respectively, and it is beneficial
to utilize the reactive capacity. However, these profit
values are typically not available because the true
mean θ is typically not available and is only estimated
(with error) as θ̂ � 182.15. In our paper, we show that
the original profit estimates based on θ̂ � 182.15 are
biased, and we provide adjustments to correct for the
biases that can be used by the newsvendor, who does
not have access to the true mean. Using these ad-
justments (that only require θ̂ and not the true un-
known value θ), our bias-adjusted estimates for the
nonreactive and reactive expected profits are $3,947
and $4,088, respectively, and we make the correct
conclusion that reactive capacity is beneficial. Finally,
note that the bias adjustment of the (nonreactive)
newsvendor profit is 7.2% of its biased estimate and
that the true expected profit (with respect to θ) of
using reactive capacity is 8.0% higher than the profit of
not using reactive capacity.

Our contributions for identifying the newsvendor
profit’s expected estimation error are derived within
the theoretical framework developed by Siegel and
Woodgate (2007) for quantifying the expected esti-
mation error in the performance offinancial portfolios
optimized using estimates of true parameters; the
newsvendor model shares the basic structure of op-
timizing while pretending that estimates are correct.
Achieving our closed-form profit adjustment is com-
plex because the order quantity and the exact func-
tional form of the realized profit are both nonlinear
functions of the estimation error of the parameter(s).
We use the method of statistical differentials to find
the second order Taylor series approximation to the
expected future profit (averaged over the random
future demand realization) and then take its expec-
tation (over the sampling error of parameter estima-
tion). Our result is asymptotically correct when the
sample size used for demand-function estimation is
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large (and simulations demonstrate that our results
are useful even for moderate sample sizes) and re-
mains statistically consistent when estimated values
are substituted for the unknown parameter(s) of the
demand distribution. In effect, we use perturbation
analysis to discover how estimation errors aremisused
by the newsvendor’s optimization process, which
wrongly “believes” that the estimated parameters are
correct. All proofs are provided in the online elec-
tronic companion.

1.1. Contributions
Our research provides the followingmain contributions:

• For a generic demand distribution, under ap-
propriate assumptions, we derive a second order
approximation of the newsvendor profit’s expected
estimation error for an arbitrary order quantity that
is a smooth function of the estimated parameters.
Using these expected estimation error results, we
provide an adjusted expected profit expression that
can be computed without knowledge of the true
parameter(s), which is an asymptotically unbiased
estimator of the true expected profit when the esti-
mated order quantity is used. Hypothesis testing
experiments confirm our theoretical results in that we
show at the 5% test level the unadjusted estimation
error is significantly positive (the null is rejected),
whereas the adjusted estimation error is not signifi-
cantly different from zero (the null is accepted).

• We similarly derive expected estimation error
expressions for the order quantity, which allows us to
also provide adjusted order quantities. We show that
some distributions (e.g., exponential and normal)
already exhibit order quantities with zero expected
estimation error, but other distributions (e.g., log-
normal) result in a nonzero expected estimation er-
ror. We provide an adjusted order quantity that is an
asymptotically unbiased estimate of the true optimal
order quantity. Again, hypothesis testing experiments
confirm our theoretical results.

• We characterize the relative importance of profit
and order quantity expected estimation errors. In
particular, the adjustment to the order quantity re-
sults in a negligible change in expected profit: for a
log-normal distribution of demand, the adjustment
results in a 0.001% increase in profit in an example. In
contrast, correcting the profit expected estimation
error is not negligible: for the same log-normal dis-
tribution of demand, the adjustment results in a 1.1%
increase in profit. Furthermore, when demand is
exponentially distributed, the order quantity is un-
biased, but the profit estimation error in an example is
3.4% of the true expected profit. Thus, the profit
adjustments can be managerially relevant.

1.2. Literature Review
The newsvendor is a fundamental model of opera-
tions management, appearing frequently in both prac-
tice and academic research. Consequently, there is a
vast literature on various aspects of the newsvendor;
here, we discuss the most relevant papers to properly
position our contributions. To the best of our knowl-
edge, we are the first to document expected estimation
error in the maximized expected profit perceived by
the newsvendor, who estimates, using available data,
the parameters of a demand distribution. Much at-
tention has been focused on various consequences of
distributional uncertainty; in particular, we discuss
the following streams of literature: (1) the data-driven
newsvendor, (2) approximation algorithms for sto-
chastic inventory-management problems, (3) algorith-
mic inventory management, (4) distributionally robust
inventory management, and (5) the newsvendor with
operational statistics in which estimation and optimi-
zation are performed jointly. However, as we discuss in
the following, these streams focus on identifying good
ordering strategies but have not studied the expected
profit estimate that a decision maker would also require
in practice.

1.2.1. Data-Driven Newsvendor. Thenewsvendormodel
can be solved using only data without any assumptions
on the form of the demand distribution: Kleywegt
et al. (2002) design the sample average approxima-
tion (SAA) method using available data to create an
empirical demand distribution, and the optimal order
quantity is found at the critical fractile of this dis-
tribution (in the newsvendor context); these authors
also identify a bias in a natural estimation of the
optimal objective value (for more general stochastic
discrete optimization problems) but do not provide
an adjustment term to correct the bias as we do in our
paper. Levi et al. (2007a) study the sampling-based
SAA method for the newsvendor as well as a mul-
tiperiod extension of it and show that their policy
has a solution that is provably near optimal with high
probability; see the references therein for a more
comprehensive literature review related to the data-
driven newsvendor. Levi et al. (2015) refine the anal-
ysis in Levi et al. (2007a) to produce tighter perfor-
mance bounds by introducing an additive bias into
the order quantity; in addition, they utilize a second
order Taylor series in their analysis as we do in ours.
Ban and Rudin (2019) extend the data-driven ap-
proach of Levi et al. (2007a, 2015) to include fea-
tures (explanatory variables) that influence the de-
mand distribution, using techniques from machine
learning; as in Levi et al. (2007a), performance bounds
are derived that hold with a prescribed probability.
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He et al. (2012) consider a similar features-based
newsvendor model for staffing hospital operating
rooms. However, in these references, the benchmark
optimal expected profit depends on the true distri-
bution, which is unknown, and hence, the optimal
expected profit is not calculable. The only calculable
profit expression is with respect to the data-driven
empirical distribution, which is the realization of a
random variable (because of sampling), and the main
results also calculate the expected value of this ran-
dom variable with respect to the true unknown dis-
tribution. Thus, although the performance guarantees
of these papers are powerful, they are implicit results,
and no calculable expressions exist for the expected
profits. In contrast, we focus on natural calculable
profit expressions based on distributional parameters
estimated from data, which turn out to have nonzero
expected estimation errors, and we provide adjust-
ments to the biased expressions, thereby giving the
decision maker a calculable unbiased estimate of
expected profit. Ban and Rudin (2019) also interpret
their results in terms of “generalization error,” in
which the decisions are based on in-sample data, but
the quality of the decisions is evaluated out-of-sample
(in terms of the unknown true distribution), and their
analysis utilizes results from machine learning on
generalization error (see references therein); in this
interpretation, we provide explicit closed-form cor-
rections for evaluating the out-of-sample expected
profits, a result that is new to the literature to the best
of our knowledge. Ban et al. (2019) also study features
of demand, but the focus is on algorithmic solutions
to multiperiod inventory-managementmodels, whereas
we focus on a single-period model in which closed-form
solutions for the order quantity, profit expressions, and
corrections are available.

1.2.2. Approximation Algorithms for Stochastic Inven-
tory Management Problems. A related stream focuses
on approximation algorithms for various stochastic
inventory management models with provable per-
formance guarantees that do not require a probabi-
listic qualifier (i.e., the performance guarantees hold
with probability one). Levi et al. (2007b) provide two-
and three-approximation algorithms for the multi-
period periodic-review stochastic inventory-control
and the stochastic lot-sizing problems, respectively.
Levi et al. (2008b) design a two-approximation al-
gorithm for a multiperiod capacitated inventory control
model. Levi et al. (2008a) derive two-approximation
algorithms for stochastic inventory control models
with lost sales. Levi and Shi (2013) provide a three-
approximation algorithm for amultiperiod stochastic
lot-sizing problem with order lead times, and Shi
et al. (2014) design a four-approximation algorithm
for a similar problem with capacities and setup costs.

These papers focus on different aspects of a single
location dealing with a single product; Levi et al.
(2017) develop various approximation algorithms with
performance guarantees between two and three for
multiechelon systems with multiple products. How-
ever, all these approximation algorithm results re-
quire complete knowledge of the true demand dis-
tribution to calculate the expectedprofits—an assumption
we relax.

1.2.3. Algorithmic Inventory Management. There are a
number of other papers that take an algorithmic ap-
proach to solving data-driven inventory-management
problems. Kunnumkal and Topaloglu (2008) apply
a stochastic gradient approach to a multiperiod news-
vendor model. Burnetas and Smith (2000) and Huh
and Rusmevichientong (2009) also apply stochastic
gradient algorithms except, to a scenario with cen-
sored demand in which only sales data—not true
demand data—are available; Godfrey and Powell
(2001), Huh et al. (2011), and Besbes and Muharre-
moglu (2013) also study the impact of censored de-
mand for the newsvendor via various algorithms.
Hannah et al. (2010) study a more general stochastic
optimization problem algorithmically, which can be
applied to an inventory-management context. Our
work differs from these papers in that we focus on a
simpler, single-period model so that we may obtain
closed-form solutions, and we assume that demand,
not just sales, data are available.

1.2.4. Distributionally Robust InventoryManagement. The
sensitivity of the newsvendor solution to the demand
distribution has been studied in the distributionally
robust optimization literature. Scarf (1958) analyzes
the so-called “distribution-free” newsvendor model,
in which the mean and standard deviation of de-
mand are given, but the distribution is not; the ob-
jective is then to maximize the worst-case expected
profit, which is minimized over all distributions with
the given mean and standard deviation. Gallego
and Moon (1993) provide extensions and a review
of similar work. More recently, Perakis and Roels
(2008) and Natarajan et al. (2018) consider similar
but more sophisticated distribution-free settings in
which, again, the focus is to derive order quantities
that serve well in the worst case. These papers as-
sume that their information is correct and do not
consider the impact of estimation error, which we
identify as an assumption with consequences to the
newsvendor’s anticipated expected profit.

1.2.5.Operational Statistics. In the paper perhapsmost
related to our research, Liyanage and Shanthikumar
(2005) consider the single-period newsvendor model
under a parametric demand distribution in which
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data are available to estimate parameters. Assuming
that demand is exponentially distributed, the authors
intentionally bias the order quantity to obtain higher
expected profit via a joint estimation–optimization
operation. We also consider the special case in which
demand is exponentially distributed, and although
the operational-statistics order quantity improves
profit, we show that it still exhibits a nonzero ex-
pected estimation error. Furthermore, we show that
the expected estimation error is considerably larger,
asymptotically, than the profit improvement. Chu
et al. (2008) study the operational-statistics approach
using Bayesian analysis for parametric distributions
characterized by location and scale parameters, deriving
closed-form solutions for an exponential distribution of
demand (matching that of Liyanage and Shanthikumar
2005) as well as for a uniform distribution of demand.
In contrast, our results are not limited to location-
scale families of distributions and are applicable to a
broad array of distributional families for which we
derive closed-form asymptotic expressions for the
profit’s expected estimation error, which can be used
to easily correct the error.

2. The Newsvendor Model
We let X denote random demand, which we assume
has a continuous distribution with cumulative dis-
tribution function F(x, θ), where θ is a parameter that
specifies the demand distribution from a family of
distributions. For this introduction, we assume that θ
is a scalar though we extend all our results to the case
in which θ is a finite-dimensional vector. The prob-
ability density function of demand for a given θ is
f (x, θ) � ∂

∂x F(x, θ) and is assumed to exist and be
positive on a contiguous interval of support. The
economics of the newsvendor model are as follows:
p > 0 is the sales price per unit, c > 0 is the cost per
unit, and q ≥ 0 is the order quantity; we assume p > c
throughout. The newsvendor profit is the random
variable pmin(q,X) − cq, and we focus on the ex-
pected profit

π q, θ
( ) � pEX∼F ·,θ( ) min q,X

( )[ ] − cq.

This expected profit is known to bemaximizedwhen q
is chosen so that 1 − F(q, θ) � c

p, where the left-hand
side of this equation is the probability of selling the qth
unit; we may write this optimality condition as

q θ( ) � F ·, θ( )[ ]−1 1 − c
p

( )
, (1)

where the inverse function is takenwith respect to the
first argument of F at a given value of θ. The expected

profit for an arbitrary ordering quantity q, when the
truth θ is known, is as follows:

π q, θ
( ) � pEX∼F ·,θ( ) min q,X

( )[ ] − cq

� p
∫ q

0
xf x, θ( )dx + pq 1 − F q, θ

( )[ ] − cq

� p − c
( )

q − p
∫ q

0
F x, θ( )dx,

(2)

where the last equality is by integration of parts.
Note that all of the results in our paper continue to

hold for the case of a fixed salvage value s. Instead
of pmin(q,X) − cq, the profit becomes pmin(q,X) −
cq + s[q −min(q,X)]. Rearranging, the profit is (p − s)
min(q,X) − (c − s)q, and so the newsvendor problem
with salvage value is entirely equivalent to the news-
vendor problemwithout salvage value provided that the
cost and price are both reduced by the salvage value. For
ease of exposition, we assume s � 0 in our paper.

2.1. Motivation for a Parametric Model
There are a number of reasons a manager should
consider using a parametric model over the purely
data-driven approaches reviewed in Section 1.2.1
(e.g., the SAA method). Researchers at Amazon,
from their ForecastingData Science and SupplyChain
Optimization Technologies groups, discuss how para-
metric distributions fit within their broader forecast-
ing activities (Madeka et al. 2018). In particular,
they discuss, in a newsvendor context, how (shifted)
gamma and log-normal distributions may be utilized
to forecast future demand. In particular, they point
out that “. . .the lognormal distribution is suitable for
evergreen products with non-negligible demands.”
Furthermore, the expected profit is larger (closer to

optimal) with a parametric model when such a model
can reasonably be assumed (e.g., by examining his-
tograms of data and/or more rigorous distributional
goodness-of-fit hypothesis testing). An efficient es-
timator of the order quantity, for instance, using the
maximum likelihood estimator (MLE) for a para-
metric model, has minimum asymptotic variance
among all estimators (see sections 6.2–6.4 of Lehman
1983 for details and regularity conditions). The de-
crease from optimal expected profit is proportional
(asymptotically) to the variance of this estimator as
may be seen using the expectation of a second order
Taylor series expansion of profit as a function of the
estimated order quantity. For example, measuring
asymptotic statistical efficiency as the ratio of vari-
ances, if the SAA estimate has efficiency 65% relative
to a (correct) parametric model, then the drop in
expected profit (as compared with using the optimal
but unknown order quantity) using the MLE is only
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65% as large as the drop in expected profit incurred
when using the SAA estimator. In fact, under expo-
nentially distributed demand, the asymptotic statis-
tical efficiency of the SAA order quantity with respect
to the parametric order quantity is never larger than
65%; we show this formally in the next section.

Finally, in a biological context, Jabot (2015) argues
that parametric forecasting is preferred to nonpara-
metric forecasts because of (1) the ability to diagnose
parametric forecasting failure via Bayesian model
checking procedures, and (2) forecasting uncertainty
can be estimated using synthetic data generated from
the fitted parametric model.

3. The Impact of Parameter Estimation on
Expected Profit

In practice, the parameterθ can be unknown, inwhich
case it is estimated as θ̂ (i.e., using data). The news-
vendor, using the estimated distribution F(·, θ̂), chooses
the stock quantity q̂≜ q(θ̂). The parameter estimate is
assumed to be unbiased and consistent so that E[θ̂] �
θ and E[(θ̂ − θ)2] � O(1n), where n is the size of an
independent and identically distributed sample of
demand quantities Xi ∼ F(·, θ), i � 1, . . . ,n. Detailed
assumptions are given in Section 3.2.

Actual expected profit is then π(q̂, θ), which is
computed using the true parameter value that de-
termines demand; that is, the order quantity is de-
termined using the estimated demand parameter θ̂,
but profit is averaged over actual demand Xwith the
correct distribution F(·, θ). However, the decision
maker does not have access to θ, and therefore, the
decision maker does not have access to the expected
profit π(q̂, θ). The only calculation a decision maker
can reasonably do, initially, to have an idea what
expected profit will actually be is π(q̂, θ̂), which is
calculated using the estimated distribution F(·, θ̂); we
call π(q̂, θ̂) the perceived expected profit. Note that
both of these expected profits (actual and perceived)
are random variables, depending on the estimate θ̂
and its random estimation error, generated when the
truth is θ.

In this paper, we show that π(q̂, θ̂) is a biased es-
timator of the true expected profit π(q̂, θ). A main
contribution of our paper is to derive an adjustment to
π(q̂, θ̂) that results in an asymptotically unbiased
estimate of the true expected profit despite the in-
accessibility of θ itself:

E π q̂, θ̂
( ) −Adjustment

[ ] � E π q̂, θ
( )[ ] + o 1/n( ),

where the expectation is taken with respect to the
sampling distribution. This adjustment is calculated
via Taylor series expansions and can be used without
knowledge of the true value of θ. In addition, our
analysis isnot limited to theorderquantity q̂; we provide

an asymptotically unbiased estimate of E[π(q̃, θ)] that
does not require knowledge of the true value of θ,
where q̃ is an arbitrary order quantity defined as a
smooth function of θ̂. We are abusing notation here
for simplicity of explanation: in fact, q̃ � q̃n, a se-
quence of functions that we assume converges to the
constant q(θ) in the limit for a large sample size n for
which θ̂ is converging to θ.
In addition, our results have implications for im-

proving the estimation of the expected mismatch
cost, which is defined as cE[max{q − X, 0}] + (p − c)
E[max{X − q, 0}]. In particular, it is straightforward to
show that the expected mismatch cost is equivalent to
(p − c)E[X] − π(q, θ); see, for instance, section 13.1 of
Cachon and Terwiesch (2012). Because expected de-
mand E[X] is estimated unbiasedly (assuming the
mean is included in the parameter vector θ), any
bias in forecasting expected profit flows directly and
dollar-for-dollar as a bias of the expected mismatch
cost. It, therefore, follows that, for the naive news-
vendor, the expected mismatch cost is estimated with
bias and that, by using our profit bias adjustment, one
can obtain an (asymptotically) unbiased estimate of
the expected mismatch cost.
Finally, we apply our Taylor series technique to

derive asymptotically unbiased estimates of the true
optimal order quantity that also depend on the un-
known value of θ to achieve the following result:

E q̂ −Adjustment
[ ] � q θ( ) + o 1/n( ).

In the next two Sections 3.1 and 3.2, we focus on the
expected profit adjustment and consider the cases of
an exponential distribution of demand and a general
distribution of demand, respectively. In the expo-
nential case, we are able to derive an exact adjustment
(i.e., no o(1/n) error term). In the general case, under
appropriate assumptions, we derive an asymptotic
adjustment via Taylor series analysis.

3.1. Closed-Form Solutions for an Exponential
Distribution of Demand

In this section, we consider the case in which demand
is exponentially distributed with unknown mean θ
that is estimated as θ̂ � 1

n
∑n

i�1 Xi. In this case, the order
quantity is q̂ � ln(p/c)θ̂. The order quantity q̂ is of the
form q̃(θ̂) � aθ̂, where a is a constant; many of the
following results are presented in terms of the more
general q̃(θ̂) � aθ̂. In our literature review, we de-
scribe the joint estimation–optimization procedure
studied in Liyanage and Shanthikumar (2005), which
derives qOS ≜ n[(p/c)1/(n+1) − 1]θ̂ as the optimal order
quantity for an exponential distribution of demand
(the subscript OS standing for operational statistics).
Thus, the general form of ordering quantity, q̃(θ̂) � aθ̂,
unifies the classical and the operational statistics
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methods because q̂� aCθ̂ with aC � ln(p/c) and qOS �
aOSθ̂, where aOS � n[(p/c)1/(n+1) − 1]. Our first result,
from Liyanage and Shanthikumar (2005), provides
the actual expected profit with respect to the true
mean θ averaged over the sampling distribution for
the general order quantity q̃(θ̂) � aθ̂; we provide a new
proof of this result. Note that we are unaware of any
similar result in the literature for a distribution other
than the exponential distribution.

Lemma 1 (Liyanage and Shanthikumar 2005). The overall
expectation of actual expected profit for exponentially dis-
tributed demand with order quantity q̃(θ̂) � aθ̂ and con-
stant a at a fixed sample size n is

E π q̃ θ̂
( )

, θ
( )[ ] � p − ac − p

n
n + a

( )n[ ]
θ.

Our next result provides the perceived expected profit
for the general order quantity q̃(θ̂) � aθ̂, where the
estimated distribution F(·, θ̂) is used instead of the
true unknown distribution F(·, θ).
Lemma 2. The overall expectation of perceived expected profit
for exponentially distributed demand with order quantity
q̃(θ̂) � aθ̂ and constant a at a fixed sample size n is

E π q̃ θ̂
( )

, θ̂
( )[ ] � p − ac − pe−a

[ ]
θ.

Comparing the overall expectation of actual and
perceived expected profit expressions of Lemmas 1
and 2, we observe that they are clearly different. Their
difference suggests an adjustment for the perceived
expected profit when the true mean θ is not known,
and we propose an adjusted expected profit

π̂a q̃ θ̂
( )

, θ̂
( )

≜π q̃ θ̂
( )

, θ̂
( ) − pθ̂

n
n + a

( )n − e−a
[ ]

. (3)

Note that this expression does not require knowledge
of the true value θ (which contrasts with Lemmas 1
and 2) and only requires its unbiased and consistent
estimator θ̂. This adjusted expected profit is an un-
biased estimator for the actual expected profit as
presented in the next proposition. In addition, with
the classical order quantity, this adjusted expected
profit has lower variance than the unadjusted ex-
pected profit, thereby reducing the mean squared
error (the sum of variance and squared bias) by re-
ducing both contributions.

Proposition 1. If demand is exponentially distributed with
fixed sample size n and order quantity q̃(θ̂) � aθ̂, then
the adjusted perceived expected profit, defined in Equation (3),
is an unbiased estimator for the actual expected profit,
E[π̂a(q̃(θ̂), θ̂)] �E[π(q̃(θ̂),θ)], and the adjustment is neg-
ative, decreasing the perceived expected profit and thereby
correcting for its over-optimism. In addition, the adjusted

perceived expected profit has smaller variance than the
unadjusted perceived expected profit when the classical
order quantity (a � aC) is used.

3.1.1. Asymptotic Properties for the Exponential
Distribution. We next develop the asymptotic proper-
ties of the adjustment’s improvement and of the ex-
pected profit improvement from using the OS or-
der quantity qOS � aOSθ̂ � n[(p/c)1/(n+1) − 1]θ̂ instead of
the classical choice q̂ � aCθ̂ � ln(p/c)θ̂. This asymp-
totic analysis allows us to show that, although the OS
expected profit improvement becomes negligible at
moderate sample sizes, the adjustment’s improve-
ment remains economically meaningful in this range.

Proposition 2. For exponentially distributed demand, the
asymptotic expected profit improvement from using the OS
order quantity in place of the classical choice is

E π qOS, θ
( )[ ] − E π q̂, θ

( )[ ]
�
cθ −2 ln p/c

( ) + ln p/c
( )[ ]2( )2

8n2
+O

1
n3

( )
.

From Proposition 2, we see that the actual expected
profit improvement from using qOS instead of q̂ is
O(1/n2). The next two results provide asymptotic
expressions for the profit expected estimation er-
rors when the unadjusted perceived expected profits
are used to estimate the actual expected profits
for both q̂ and qOS ordering quantities, respectively.
These errors can also be interpreted as improvements
when the adjusted expected profits are used instead,
which we contrast with the profit improvement of
Proposition 2.

Proposition 3. For exponentially distributed demand, the
asymptotic expected estimation error for the unadjusted
perceived expected profit when the classical order quantity is
used is

E π q̂, θ̂
( )−π q̂, θ

( )[ ]
� cθ

ln p/c
( )[ ]2
2n

+−8 ln p/c
( )[ ]3 + 3 ln p/c

( )[ ]4
24n2

[ ]
+O

1
n3

( )
,

and when the OS order quantity is used, it is

E π qOS, θ̂
( ) − π qOS, θ

( )[ ]
� cθ

ln p/c
( )[ ]2
2n

+
−24 ln p/c

( )[ ]2 + 16 ln p/c
( )[ ]3

− 3 ln p/c
( )[ ]4

24n2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+O
1
n3

( )
.
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From Proposition 3, we observe that the asymptotic
expected estimation error for the OS order quantity is
identical to that of the classical order quantity, up to
O(1/n), and differs only in the O(1/n2) term. Fur-
thermore, these results show that the expected profit
estimation errors for q̂ and qOS are both O(1/n), which
is asymptotically greater than the actual profit im-
provement of O(1/n2). Thus, if one were to use qOS

instead of q̂, a small amount of additional profit
would be realized; however, if a naive estimation of
expected profit is used (i.e., using F(·, θ̂)), the expected
estimation error dwarfs the improvement. Therefore,
we recommend decision makers adopt our unbiased
adjusted expected profit expression to eliminate the
expected estimation error whether or not they use the
OS order quantity.

3.1.2. Numerical Verification for the Exponential
Distribution. In this section, we (numerically) com-
pare the magnitude of the operational statistics
approach’s profit improvement over the classic order
quantity (solid line) with that of its expected esti-
mation error (dashed line) for demand that is expo-
nentially distributed with mean θ � 200. In the left
pane of Figure 1, for c � 0.4 and p � 1, we see the
improvement and expected estimation error as a
function of sample size n, and we observe that, al-
though the profit improvement of the operational
statistics approach is indeed positive, the profit ex-
pected estimation error still exists and is much larger
than the improvement. Furthermore, the profit im-
provement becomes negligible for moderate values
of n, yet the expected estimation error remains eco-
nomically meaningful for much larger values of n. In
the right pane, we provide the profit improvement
and expected estimation error as a function of c/p for
n � 20 and we observe similar results.

3.1.3. Efficiency of Parametric and SAA Estimates of
Order Quantity for the Exponential Distribution. In this
section, we formalize our argument from Section 2.1
that the parametric estimate of the optimal order
quantity is asymptotically more efficient than the
SAA estimate, which orders the 1 − c/p percentile of
the empirical distribution. The statistical efficiency of
the estimator q̂SAA with respect to theMLE q̂ is defined
as Var(q̂)

Var(q̂SAA).

Lemma 3. The asymptotic statistical efficiency of the SAA
order quantity q̂SAA as compared with theMLE order quantity
q̂ � θ̂ ln(p/c) under the exponential demand parametric
model tends asymptotically (as sample size n grows) to

Var q̂
( )

Var q̂SAA
( ) → ln p/c

( )[ ]2
p/c − 1

,

which can be no larger than 64.8%.

3.2. Asymptotic Solutions for a General
Distribution of Demand

In this section, we extend our results from the ex-
ponential distribution to a larger class of smooth
distributions with smoothness conditions given as
follows. Furthermore, we consider an arbitrary or-
der quantity q̃(θ̂), where q̃ is a smooth function of θ̂ in
the sense that q̃ is differentiable as a function of θ̂, and
the derivative is locally Lipschitz continuous in θ̂. We
also assume that q̃(θ̂) is a consistent estimator of q̃(θ)
in the sense that q̃(θ̂) converges in probability to q̃(θ)
as sample size ngrows—an example ofwhich appears
as qOS in Proposition 2. For such a distribution and
order quantity, using a Taylor series approximation, we
expand the expression for π(q̃(θ̂), θ̂) − π(q̃(θ̂), θ) about
θ to second order in θ̂ − θ and then take the expected
value; the result is the second order expected estimation
error, which is O(1/n). We let ∇ denote the gradient

Figure 1. (Color online) Demand Has an Exponential Distribution with θ � 200

Notes. (Left) Operational statistics profit improvement (over classic order quantity) and profit expected estimation error as a function of n.
(Right) Operational statistics profit improvement (over classic order quantity) and profit expected estimation error as a function of c/p.
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operator with respect to θ and let ∇2 denote the
Hessian matrix operator with respect to θ.

Our smoothness conditions (which, henceforth, are
to be assumed) on the parametric family of distri-
butions are adapted from Lehman (1983, chapter 6,
corollary 2.3, theorems 2.3 and 1.1) and are sufficient
to ensure that the maximum likelihood estimator
exists and is efficient. In particular, these assumptions
are satisfied by any one-parameter exponential family
of distributions (see, e.g., Lehman 1983).

3.2.1. Assumptions for General Demand Distribu-
tion Family.

1. The parameter space for θ is an open interval
(possibly unbounded), and the distribution F(·, θ) has
density f (·, θ). The observations are independent and
identically distributed with distribution F(·, θ) for
some true value of θ that is in the parameter space.

2. The distributions F(·, θ) have common support
A � {x : f (x, θ) > 0} and are distinct to ensure esti-
mation is possible.

3. For every x ∈ A, the density f (·, θ) is three times
differentiable with respect to θ, and the third deriv-
ative is continuous in θ.

4. The integral
∫
f (x, θ)dx can be twice differenti-

ated under the integral sign.
5. The Fisher information I(θ) is positive and finite

(see Lehman 1983, section 6.4 for additional assump-
tions for the vector parameter case).

6. For any given θ0 in the parameter space, there
exists ν > 0 and a function M(x) (both of which may
depend on θ0) such that Eθ0[M(X)] < ∞ and also |∂3
ln f (x, θ)/∂θ3| ≤ M(x) for all x ∈ A andθ0−ν<θ<θ0+ν.

7. The probability of multiple roots to the likeli-
hood equation

∑
∂ ln[f (xi, θ)]/∂θ � 0 tends to zero as

the sample size n → ∞.
In the following proposition, for a multidimensional
parameter θ � (θ1, . . . , θk)′, where k is a finite integer,
we show that the newsvendor’s perceived expected
profit π(q̃(θ̂), θ̂) is systematically biased in that it
differs, on average, from the actual expected profit
π(q̃(θ̂), θ) that is realized based on the true, but un-
known, demandparameterθ. Subsequently,we show
how these expected estimation errors can be used to
create adjusted expected profits that more accurately
reflect reality (i.e., they are unbiased). In addition,
note that the sign of the expected estimation error is
not yet evident; we explore the direction of the error in
Section 3.3 by applying our generic expressions to
specific distributions.

Proposition 4. If q̃(θ̂) is smooth as defined at the start
of the section, then the profit expected estimation er-
ror E[π(q̃(θ̂), θ̂) − π(q̃(θ̂), θ)] for q̃(θ̂) for the case of a

k-dimensional parameter θ � (θ1, . . . , θk)′ with unbiased
estimator θ̂ equals

− p · tr Cov θ̂
( ) ∇q̃ θ( )( ) ∇F( )′

([
+ 1
2

∫ q̃ θ( )

0
∇2F x, θ( )dx

)]
+ o

1
n

( )
,

where tr denotes the matrix trace operator, ∇q̃(θ) is the
gradient of q̃(θ) with respect to θ, ∇F is the gradient of F
with respect to θ and evaluated at (q̃(θ), θ),∇2F(x, θ) is the
k × k Hessian matrix of F with respect to θ, and Cov(θ̂) is
the covariance matrix of θ̂.

The expression identified in Proposition 4 provides
evidence that a nonzero expected estimation error
indeed exists; we provide further evidence via nu-
merical experiments, focused on identifying statisti-
cally significant nonzero expected estimation errors,
in Section 3.5.
We can apply Proposition 4 to the special case in

which q̃(θ̂) � q̂ for which ∇q̂(θ) � −∇F/f from Lemma
EC.4, which results in the following corollary.

Corollary 1. The profit expected estimation error E[π(q̂, θ̂) −
π(q̂,θ)] for q̂ for the case of a k-dimensional parameter
θ � (θ1, . . . , θk)’ with unbiased estimator θ̂ equals

p · tr Cov θ̂
( ) ∇F( ) ∇F( )′

f
− 1
2

∫ q

0
∇2F x, θ( )dx

( )[ ]
+ o

1
n

( )
,

where q � q(θ), tr denotes the matrix trace operator,
f � f (q, θ), ∇F is the gradient of F with respect to θ and
evaluated at (q, θ), ∇2F(x, θ) is the k × k Hessian matrix of
F with respect to θ, and Cov(θ̂) is the covariance matrix
of θ̂.

The next corollary considers the scalar θ case of
Proposition 4 for the general ordering quantity q̃(θ̂).
Corollary 2. If q̃(θ̂) is smooth as defined at the start of the
section, then the profit expected estimation error E[π(q̃(θ̂),
θ̂) − π(q̃(θ̂), θ)] for q̃(θ̂) for the case of a one-dimensional
parameter θ with unbiased estimator θ̂ equals

−p · Var θ̂( ) · q̃′ θ( )Fθ + 1
2

∫ q̃ θ( )

0
Fθθ x, θ( )dx

( )
+ o

1
n

( )
,

where q̃′(θ) � ∂q̃(θ)
∂θ , Fθ � ∂F

∂θ (q̃(θ), θ), Fθθ(x, θ) � ∂2F(x,θ)
∂θ2 ,

and Var(θ̂) is the variance of θ̂ under its sampling
distribution.

Note that Corollary 2 is applicable to both the
naive order quantity q̂ � [F(·, θ̂)]−1(1 − c/p) as well
as the operational statistics order quantity qOS � n
[(p/c)1/(n+1) − 1]θ̂ for an exponential distribution of
demand. Furthermore, the following corollary results
when assigning q̃(θ̂) � q̂ because q̃′(θ) � −Fθ/f for the
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naive order quantity as follows by differentiating
the equation 1 − c/p � F(q̂(θ), θ) with respect to θ to
find 0 � f (q̂(θ), θ)q̂′(θ) + Fθ(q̂(θ), θ) � f q̂′(θ) + Fθ.

Corollary 3. The profit expected estimation error E[π
(q̂, θ̂) − π(q̂, θ)] for q̂ for the case of a one-dimensional
parameter θ with unbiased estimator θ̂ equals

p · Var θ̂( ) · F2θ
f
− 1
2

∫ q

0
Fθθ x, θ( )dx

( )
+ o

1
n

( )
,

where q � q(θ), Fθ � ∂F(q,θ)
∂θ , f � f (q, θ), Fθθ(x, θ) � ∂2F(x,θ)

∂θ2 ,
and Var(θ̂) is the variance of θ̂ under its sampling
distribution.

3.2.2. Estimating theCovarianceMatrix. Our framework
assumes that there is a single vector of data, (X1, . . . ,Xn),
that is available to approximate θ � (θ1, . . . , θk)′, which
leads to a single vector estimate θ̂ � (θ̂1, . . . , θ̂k)′.
However, this setup is not sufficient to directly esti-
mate the covariance matrix Cov(θ̂) required for Prop-
osition 4 and Corollary 1 because we would need
multiple samples of the vector estimate θ̂. Conse-
quently, we approximate Cov(θ̂) by using the Fisher
information matrix

I θ( ) � −EX∼F ·,θ( ) ∇2 ln f X, θ( )( )[ ]
,

where the expectation is taken over the random de-
mand X with distribution F(·, θ), parameterized by
the true value θ, and ∇2 is the Hessian second de-
rivative operator with respect to θ. Using the as-
ymptotic theory of maximum likelihood estimation
(see, for instance, Lehman 1983, sections 6.2–6.4, in
particular theorems 2.3 and 4.1) together with our
assumptions for general demand distribution family
near the start of Section 3.2, we may approximate the
covariance matrix of θ̂ as follows:

Cov θ̂
( ) � 1

n
I−1 θ( ) + o

1
n

( )
.

Similarly, for the univariate parameter case, the Fisher
information is the scalar

I θ( ) � −EX∼F ·,θ( )
∂2

∂θ2 ln f X, θ( )
[ ]

,

which allows the variance of θ̂ to be approximated as
Var(θ̂) � 1

nI(θ) + o(1n). The following corollary uses these
expressions to rewrite the expected estimation errors.

Corollary 4. If q̃(θ̂) is smooth as defined at the start of
section 3.2, then the profit expected estimation error

E[π(q̃(θ̂), θ̂) − π(q̃(θ̂), θ)] for q̃(θ) for the case of a
k-dimensional parameter θ � (θ1, . . . , θk)′ with unbiased
estimator θ̂ equals

p
n
tr EX∼F ·,θ( ) ∇2 ln f X, θ( )( )[ ]( )−1[
× ∇q̃ θ( )( ) ∇F( )′ + 1

2

∫ q̃ θ( )

0
∇2F x, θ( )dx

( )]
+ o

1
n

( )
,

and the case of a one-dimensional parameter θ with un-
biased estimator θ̂ equals

p

nEX∼F ·,θ( ) ∂2

∂θ2 ln f X, θ( )
[ ]

× q̃′ θ( )Fθ + 1
2

∫ q̃ θ( )

0
Fθθ x, θ( )dx

( )
+ o

1
n

( )
.

Corollary 4 allows us to derive adjustments for the
newsvendor’s perceived expected profit that are easily
computable to better reflect reality; we explore this
topic in the next section.

3.2.3. UnbiasedAdjusted Expected Profit Estimation. In
this section, we provide an adjusted expected profit
estimator, denoted as π̂a, which better reflects the
actual expected profit observed by the newsvendor
than its naive estimate, in which the hat over the π
indicates that this is an estimatedvalue that is available to
the newsvendor. To construct this adjusted expected
profit,wemodify the newsvendor’s perceived expected
profitπ(q̃(θ̂), θ̂)by subtracting a consistent estimate of
the second-order expected estimation error that is
obtained by replacing unknown quantities in the
error formulas with their estimates and ignoring the
o(1/n) error term. The result is that this adjusted ex-
pected profit is unbiased (to the second order) with re-
spect to the actual expected profitπ(q̃(θ̂), θ) in the sense
that their expectations are equal to the second order.
For the case of a one-dimensional parameter θwith

unbiased estimator θ̂, we propose the following ad-
justed expected profit

π̂a q̃ θ̂
( )

, θ̂
( )

≜π q̃ θ̂
( )

, θ̂
( ) − p

nEX∼F · ,θ̂( ) ∂2

∂θ2 ln f X, θ̂
( )[ ]

× q̃′ θ̂
( )

F̂θ + 1
2

∫ q̃ θ̂( )
0

Fθθ x, θ̂
( )

dx

( )
,

where F̂θ � ∂F
∂θ (q̃(θ̂), θ̂) and Fθθ(x, θ̂) � ∂2F

∂θ2 (x, θ̂) are both
available without knowledge of the true value of θ.
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Similarly, for the case of a k-dimensional vector pa-
rameter θ with unbiased estimator θ̂, we propose

π̂a q̃ θ̂
( )

, θ̂
( )

≜π q̃ θ̂
( )

, θ̂
( )

− p
n
tr EX∼F ·,θ̂( ) ∇2 ln f X, θ̂

( )( )[ ]( )−1[
× ∇q̃ θ̂

( ) ∇F̂( )′ + 1
2

∫ q̃ θ̂( )
0

∇2F x, θ̂
( )

dx

( )]
,

where ∇F̂ � ∇F(q̃(θ̂), θ̂) and ∇2F(x, θ̂) is the Hessian of
F evaluated at (x, θ̂), which are also available without
knowing the true value of θ. This leads to the fol-
lowing theorem, one of the main results of our paper.

Theorem 1. If q̃(θ̂) is smooth as defined at the start of
Section 3.2, then, in the case of a k-dimensional, k ≥ 1, vector
parameter θ with unbiased estimator θ̂, the adjusted ex-
pected profit eliminates the O(1/n) bias and is unbiased up to
o(1/n). That is,

E π̂a q̃ θ̂
( )

, θ̂
( )[ ] � E π q̃ θ̂

( )
, θ

( )[ ] + o
1
n

( )
.

3.3. Illustrative Examples
In this section, we apply the general results derived in
the previous sections to representative distributions
and the classic order quantity q̂ to learn how the
expected estimation error depends on specific situa-
tions. We consider the exponential and normal dis-
tributions. In particular, we show that the second-
order expected estimation error is positive in all cases.

3.3.1. Exponential Distribution. We first consider the
exponential distribution that depends on a single pa-
rameter: its mean θ. We may use the unbiased esti-
mator θ̂ � 1

n
∑n

i�1 Xi, where E[θ̂] � θ andVar(θ̂) �θ2/n.
If θwere known, the optimal order quantity would be
q � θ ln(p/c). However, the newsvendor naively uses
q̂ � θ̂ ln(p/c) instead. Applying Equation (2), we may
find the expected profit with exponentially distrib-
uted demand for an arbitrary order quantity q̃ and
mean θ: π(q̃, θ) � pθ(1 − e−q̃/θ) − cq̃. This allows us to
determine the estimation error for q̂,π(q̂, θ̂) − π(q̂, θ) �
pθ̂(1 − e−q̂/θ̂) − pθ(1 − e−q̂/θ), whose expected valuewith
respect to the sampling distribution of θ̂ is provided in
the following proposition.

Proposition 5. The (positive) profit expected estimation
error for q̂ for the case of an exponential distribution with
mean θ and computed using the general distribution result
of Corollary 2 equals

E π q̂, θ̂
( ) − π q̂, θ

( )[ ] � cθ ln p/c
( )[ ]2
2n

+ o
1
n

( )
.

Wemay contrast the result of Proposition 5, obtained
by applying the general result of Corollary 3 to the

exponential distribution, with that of Proposition 3,
which is derived using the form of the exponential
distribution. Note that the 1

n term is identical in both
expressions, and the value of using Proposition 3 is
that the coefficient of the 1/n2 term is known exactly,
whereas it is not known exactly in Proposition 5,
using the more general result.

Note that this second order expected estimation
error cθ[ln(p/c)]2/(2n) for the exponential distribution
is positive.We also note that, all else equal, the second
order expected estimation error is monotonically in-
creasing in p, is proportional to expected demand θ,
and is inversely proportional to n. As c changes, all
else equal, the behavior depends on the sign of the
partial derivative

∂

∂c
cθ ln p/c

( )[ ]2
2n

( )
� θ ln p/c

( )
ln p/c

( ) − 2
[ ]
2n

,

which is positive when c < pe−2 ≈ p/7.389. Thus, the
secondorder expected estimation error initially increases
with c, reaching its maximum value of 2pθ/(ne2)when
c � pe−2, and then decreases to zero when c � p with
q � q̂ � 0. In particular, whenever c > p/7.389, the
second order expected estimation error is decreasing
with c. Finally, replacing the unknown θ value in the
second order expected estimation error expression
with its known unbiased estimator θ̂, we can deter-
mine the adjusted expected profit.

Corollary 5. The adjusted expected profit for an exponential
distribution is

π̂a q̂, θ̂
( ) � pθ̂ 1 − c/p

( ) − cq̂ − cθ̂ ln p/c
( )[ ]2
2n

,

where E[π̂a(q̂, θ̂)] � E[π(q̂, θ)] + o(1n).

3.3.2. Normal Distribution. We now consider the nor-
mal distribution, which is parameterized by the two-
vector θ � (μ, σ), where μ is the mean and σ is the
standard deviation of demand. If μ and σ are known,
the optimal order quantity is q � q(θ) � μ + σΦ−1(1 − c

p).
The estimated order quantity, based on an estimate
θ̂ � (μ̂, σ̂) for θ � (μ, σ), is q̂ � q(θ̂) � μ̂ + σ̂Φ−1(1 − c

p).
We use the arithmetic mean μ̂ � 1

n
∑n

i�1 Xi as an
unbiased estimator for μ. However, the usual esti-
mators of the standard deviation σ are known to be
biased (these usual estimators include the sample
standard deviation that divides the sum of squared
residuals by n − 1 before the square root is taken and
the MLE that divides by n). Note that the sample
variance is an unbiased estimator of σ2 but that the
nonlinearity of the square root function introduces
bias into the sample standard deviation as an esti-
mator of σ, which is used to find the order quantity.
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Using properties of the chi distribution (the square
root of a chi-squared distribution) with n − 1 degrees
of freedom from (18.14) of Johnson et al. (1994), we
may construct an unbiased estimator σ̂ of σ with
moments as follows:

σ̂≜ kn

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n − 1

∑n
i�1 Xi − X̄

( )2√
,

where

kn ≜
̅̅̅̅̅̅̅
n − 1

√ Γ n − 1( )/2[ ]̅̅
2

√
Γ n/2( )

( )

� 1
1 − 1

4 n−1( ) +O 1
n2
( ) � 1 + 1

4n
+O

1
n2

( )
,

which implies that E[σ̂] � σ and Var(σ̂) � σ2(k2n − 1) �
σ2

2n+ O( 1n2). The expansion of kn (and, therefore, of the
variance) are obtained from (18.15) of Johnson et al.
(1994), who credit Johnson and Welch (1939).

The expected profit with normally distributed de-
mand for an arbitrary order quantity q̃ and parame-
ters θ � (μ, σ), where Φ and ϕ denote the standard
normaldistribution anddensity, respectively, is given by
Cachon and Terwiesch (2012) as

π(q̃, θ) � p − c
( )

q̃ − p q̃ − μ
( )

Φ
q̃ − μ

σ

( )
− pσϕ

q̃ − μ

σ

( )
. (4)

Using this, alongwith the facts that q̂� μ̂+ σ̂Φ−1(1− c/p)
and q � μ + σΦ−1(1 − c/p), the estimation error (given
the estimate θ̂) is

π q̂, θ̂
( ) − π q̂, θ

( )
� p q̂ − μ

( )
Φ

q̂ − μ

σ

( )
− q̂ − μ̂

( )
Φ

q̂ − μ̂

σ̂

( )[
+ σϕ

q̂ − μ

σ

( )
− σ̂ϕ

q̂ − μ̂

σ̂

( )]
� p q̂ − μ

( )
Φ

q̂ − μ

σ

( )
− σ̂ 1 − c

p

( )
Φ−1 1 − c

p

( ){
+ σϕ

q̂ − μ

σ

( )
− σ̂ϕ Φ−1 1 − c

p

( )[ ]}
.

The expected value of the estimation error with re-
spect to the sampling distribution of θ̂ is provided in
the following proposition.

Proposition 6. The profit expected estimation error for q̂ for
the case of a normal distribution with mean μ and stan-
dard deviation σ and unbiased estimators μ̂ and σ̂, respec-
tively, equals

E π q̂, θ̂
( ) − π q̂, θ

( )[ ]
�
pσ 2 + Φ−1 1 − c/p

( )[ ]2( )
4n

ϕ Φ−1 1 − c/p
( )( ) + o

1
n

( )
.

Note that the second order expected estimation error
for the normal distribution is positive as was the case
for the exponential distribution. In contrast to the
exponential distribution case, the second order ex-
pected estimation error does not depend on the mean
μ (although we note a similar proportionate depen-
dence on the standard deviation for both distribu-
tions). All else equal, the second order expected es-
timation error is proportional to the uncertainty in
demand σ and is inversely proportional to the sample
size n. We also find that, for a fixed ratio c/p, the
second order expected estimation error is propor-
tional to p. Note that the second order expected es-
timation error is symmetric in ξ≜Φ−1(1 − c/p) so that
it remains unchanged if c is changed to p − c, replacing
ξ with −ξ. All else equal, the second order expected
estimation error is maximized when the cost is half of
the price because ξ � 0 at this point, and this is the
only root of the derivative

d
dξ

2 + ξ2
( )

ϕ ξ( ) � −ξ3ϕ ξ( ),

which changes sign from positive to negative at zero.

The second order expected estimation error ap-
proaches zero as the cost c approaches either zero or p.
As c approacheszero, theorderquantity q approaches∞,
and the newsvendor’s expected profit approaches pμ
for which we have an unbiased estimate pμ̂, and
hence, there is no estimation error in this limit. As c
approaches p, the order quantity q effectively ap-
proaches zero, and thenewsvendor’s profit approaches
zero, and hence, there is no estimation error in this
limit either as the estimates become irrelevant.
Replacing the unknown μ and σ values with their

known unbiased estimators μ̂ and σ̂, respectively, we
can determine the adjusted expected profit.

Corollary 6. The adjusted expected profit for a normal
distribution with unbiased estimated mean μ̂ and standard
deviation σ̂ is

π̂a q̂, θ̂
( ) � p − c

( )
q̂ − p q̂ − μ̂

( )
Φ

q̂ − μ̂

σ̂

( )

− pσ̂ϕ
q̂ − μ̂

σ̂

( )
−
pσ̂ 2 + Φ−1 1 − c/p

( )[ ]2( )
4n

× ϕ Φ−1 1 − c/p
( )( )

� p − c
( )

μ̂ + σ̂Φ−1 1 − c/p
( )[ ] − pσ̂ 1 − c/p

( )
×Φ−1 1 − c/p

( ) − pσ̂ϕ Φ−1 1 − c/p
( )[ ]

−
pσ̂ 2 + Φ−1 1 − c/p

( )[ ]2{ }
4n

ϕ Φ−1 1 − c/p
( )[ ]

,

where E[π̂a(q̂, θ̂)] � E[π(q̂, θ)] + o(1n).
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3.4. Managerial Insights
In this section, we unify and discuss the observations
we made in our analysis of the exponential and
normal distributions. In both cases, we observe that
the expected profit estimation error is inversely pro-
portional to the sample size; in other words, as the
sample size increases, the profit bias decreases. Thus, in
practice, one way to reduce the expected profit estima-
tion error is to collect more samples.

We also find that the exponential distribution’s
profit estimation error is increasing in the mean θ,
whereas the normal distribution’s error is increasing
in σ (and does not depend on the mean μ). However,
noting that the exponential distribution’smean is also
equal to its standard deviation, we conjecture a sec-
ond commonality: as the demand distribution has
more uncertainty, the profit bias increases.

Regarding the economic parameters of the news-
vendor, we observe some differences that depend on
the distribution: the exponential’s profit bias is in-
creasing in p, whereas the normal distribution’s de-
pendence on p is more subtle. In both cases, we ob-
serve that the bias is unimodal in c with a maximum
at a distribution-dependent value of c. We can argue
that this behavior is general: the bias cannot be
monotonic in c for fixed p (if there is a bias for any
value of c) because the bias approaches zero at the
endpoints of the interval c ∈ (0, p). To see this, note
that, for a fixed value of p, the bias approaches zero as
c → 0 because the order quantity F̂−1(1 − c/p) tends to
infinity, stock-outs become very rare, and expected
profit tends toward pE[X]; if the newsvendor has an
unbiased estimator of mean demand E[X], then there
is no bias (because there is no nonlinearity). The bias
also approaches zero as c → p from below because the
order quantity F̂−1(1 − c/p) tends to zero, and the
newsvendor’s estimated profit tends to agree closely
with the true expected profit because they are both
small numbers. On the other hand, the bias is monotonic
in c when the ratio c/p is held fixed, which releases c
from its upper bound. In fact, the bias is proportional
to c in this case as it is also with respect to p as may be
seen from Corollaries 1 and 3 because q remains
unchanged when we fix the ratio.

3.5. Numerical Verification: Exponential and Normal
Demand Distributions

Simulations were performed for the exponential and
normal demand cases, and considerable expected
estimation error reduction was observed using our
second order approach.Our experimental primitive is
as follows: we generate a sample of n � 25 observa-
tions from the true distribution (as specified by θ) to
obtain the estimate θ̂, fromwhich we obtain the order
size q̂.We then compute two exact expectations (given
this q̂) of profit: π(q̂, θ̂) as perceived by the naive

newsvendor and π(q̂, θ) as the newsvendor actually
experiences (note that these expressions appear in
Sections 3.3.1 and 3.3.2). Their difference, perceived
minus actual expected profit, defines the estimation
error before adjustment. For the estimation error after
adjustment,we subtract the expected estimation error
(which is also a function of θ̂). We are interested in
exploring the expected values of these two measures
using simulation.
To improve the efficiency of the Monte Carlo simu-

lations, for each sample, we create an antithetic sam-
ple by replacing each observation in the sample of 25
with its complementary percentile, which preserves
distributions and expected values while decreasing
the variance of the simulations as a result of nega-
tive correlation (Hammersley and Morton 1956). This
method uses the fact that, if F is a cumulative dis-
tribution function and U is uniformly distributed
from zero to one, then both F−1(U) and F−1(1 −U)
follow the same distribution F but are negatively
correlated. In the normal case, the two values are
simple reflections about the mean.
Thus, for each sample of size 25, we compute es-

timation errors (both before and after adjustment) for
both samples (original and antithetic). We then av-
erage the two values (original and antithetic) for each
of the measures (before and after adjustment). The
result is a pair of unbiased estimates for the error
(before and after adjustment).
We compute the t-statistic (testing against zero

estimation error) for each measure (before and after
adjustment) by repeating this procedure for 10,000
independent samples (note that, although an indi-
vidual sample and its antithetic counterpart are nega-
tively correlated, by averaging them, we may focus on
independent random variables while preserving the
expectation of interest). The result is a pair of t-statistics
for the expected estimation error: one before and one
after adjustment.
We then repeat this procedure 100 times to obtain

100 pairs of t-statistics, each based on 10,000 paired
antithetic simulations. In Figure 2,we plot histograms
of these 100 paired t-statistics for the exponential (left)
and normal (right) distributions. For the exponential
distribution, we utilize θ � 200; for the normal dis-
tribution, we utilize μ � 200 and σ � 65. In both cases,
we set p � 5 and c � 3. We observe strong evidence
that our asymptotic adjustment eliminates the sta-
tistically significant estimation error very effectively
even in these finite samples. In the left plot of Figure 2,
the unadjusted estimation error for the exponential
distribution shows high statistical significance (i.e.,
the t-values in the histogram at right are considerably
higher than the standard 1.96 critical value), which is
successfully eliminated by the asymptotic correc-
tion (i.e., the histogram at left is centered at zero).
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For exponential demand, the expected profit is 90.4,
and the expected estimation error is 3.1, which is a
nonnegligible 3.4% of the profit. In the right plot of
Figure 2, we observe similar behavior for the normal
distribution for which the expected profit is 271.9 and
the expected estimation error is 2.6, which is 1% and
less than in the exponential case but still nonnegligible.
This smaller expected estimation error in the normal case
may be due to its smaller standard deviation.

4. The Impact of Parameter Estimation on
the Order Quantity

In the previous section, we show that, despite uti-
lizing unbiased estimates of the parameters of the
probability distribution of demand, the newsvendor
profit exhibits a nontrivial estimation error. In this
section, we study whether the order quantity itself
has an estimation error and show how to correct this
error when it exists.

As in the previous section and using Equation (1),
we may define the estimation error as the difference
between naive and optimal order quantities, q(θ̂) −
q(θ) � q̂ − q, which is again a random variable as it
depends on the random variable θ̂. Averaging over
the sampling distribution of θ̂, we obtain the expected
estimation error

E q̂ − q
[ ]

.

Using similar techniques as in the previous section,
we are able to prove the following result.

Proposition 7. The expected estimation error in the order
quantity for the case of a k-dimensional parameter θ �
(θ1, . . . , θk)′ with unbiased estimator θ̂ equals

E q̂ − q
[ ] � −tr Cov θ̂

( ) fq ∇F( ) ∇F( )′ − 2f ∇F( ) ∇f( )′
+ f 2 ∇2F

( )
2f 3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ o
1
n

( )
� γ

n
+ o

1
n

( )
,

where γ≜ − tr[I−1(θ)( fq(∇F)(∇F)′−2f (∇F)(∇f )′+f 2(∇2F)
2f 3 )]. The

expected estimation error in the order quantity for the case
of a one-dimensional parameter θ with unbiased estima-
tor θ̂ equals

E q̂ − q
[ ] � −Var θ̂( ) fqF2θ − 2fFθf θ + f 2Fθθ

2f 3
+ o

1
n

( )
.

4.1. Unbiased Adjusted Order Quantity Estimation
In this section, we define an adjusted order quantity,
denoted as q̂a, which provides an unbiased estimate of
the true optimal order quantity. To construct this
adjusted order quantity, wemodify the newsvendor’s
naive order quantity q(θ̂) by subtracting a consistent
estimate of the second order expected estimation
error term identified in Proposition 7 (substituting the
consistent estimators θ̂ for θ and q̂ for q, in particular
to estimate the partial derivatives).

Proposition 8. In the case of a k-dimensional parameter θ
with unbiased estimator θ̂, if we define the adjusted order
quantity as

q̂a ≜ q̂ + 1
n
tr I−1 θ̂

( ) f̂ q ∇F̂( ) ∇F̂( )′−2f̂ ∇F̂( )
× ∇f̂( )′ + f̂ 2 ∇2F̂( )

2f̂ 3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� q̂ − γ̂

n
,

then E[q̂a] � q + o(1n) so that the O(1/n) term has been
removed from the bias of q̂, where our consistent estima-
tor is

γ̂≜ − tr I−1 θ̂
( ) f̂ q ∇F̂( ) ∇F̂( )′ −2f̂ ∇F̂( ) ∇f̂

( )′ + f̂ 2 ∇2F̂
( )

2f̂ 3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

We next show that the order-quantity estimation
error does not materially affect the expected-profit
estimation error. That is, the naively estimated order

Figure 2. (Color online) Adjustment Eliminates Bias for Exponential and Normal Demand

Notes. (Left) Exponential distribution with θ � 200, p � 5, and c � 3 with samples of size n � 25. (Right) Normal distribution with μ � 200,
σ � 65, p � 5, and c � 3 with samples of size n � 25.
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quantity can itself have an estimation error, which can
be corrected via Proposition 8; however, the second
order profit expected estimation error formula re-
mains unchanged (from its form in Corollary 1), and
the expected profit is not materially improved by the
estimation error correction of the estimated order
quantity (i.e., this change is zero to second order). We
work with the general case of k ≥ 1 real parameters in
the vector θ. We next show that the second-order
profit expected estimation error for the adjusted or-
der quantity is the same as that of the unadjusted
order quantity.

Proposition 9. The profit expected estimation error E[π
(q̂a, θ̂) − π(q̂a, θ)] for q̂a for the case of a k-dimensional
parameter θ � (θ1, . . . , θk)′ with unbiased estimator θ̂
equals

p · tr Cov θ̂
( ) ∇F( ) ∇F( )′

f
− 1
2

∫ q

0
∇2F x, θ( )dx

( )[ ]
+ o

1
n

( )
� p
n
tr I−1 θ( ) ∇F( ) ∇F( )′

f
− 1
2

∫ q

0
∇2F x, θ( )dx

( )[ ]
+ o

1
n

( )
.

Furthermore, the change in actual expected profit (un-
der the true demand parameter θ) is negligible; that is, E[π
(q̂a, θ) − π(q̂, θ)] � o(1n).

We recognize that the first result in Proposition 9
has the same functional form as that in Corollary 1,
which is why the second result shows that the order
quantity adjustment results in no additional profit to
second order.

4.2. Illustrative Example: Log-Normal
Demand Distribution

Wenow study the log-normal demand distribution as
an example with a biased order quantity. Note that
the exponential distribution has an unbiased order
quantity because E[q̂]�E[θ̂ln(p/c)]�θln(p/c)�q. Simi-
larly, for normally distributed demand with the
unbiased estimates μ̂ and σ̂, we find E[q̂] �E[μ̂+
σ̂Φ−1(1− c/p)] �μ+σΦ−1(1− c/p) � q. This generalizes
to show that the order quantity is unbiased for any
location-scale family of demand distributions when
unbiased parameter estimates are used.

Log-normal demand may be represented as X � eY,
whereY (the log of demand) has a normal distribution
with mean μ and standard deviation σ. The unbiased
mean and standard deviation estimates (μ̂ and σ̂ as
used in the normal case) may now be computed using
the logs of sampled demands. The unadjusted order
quantity for the log-normal distribution is, there-
fore, q̂ � q(θ̂) � eμ̂+σ̂Φ−1(1−c/p).

Proposition 10. For the log-normal distribution, the as-
ymptotic estimation error-correction term for the estimated
order quantity is

γ

n
� σ2 2 + ξ2

( )
q

4n
,

so the adjusted estimated order quantity is q̂a � q̂ − γ̂/n,
where γ̂ � σ̂2(2+ξ2)q̂

4 and ξ � Φ−1(1 − c/p).
The next result provides the profit expected esti-

mation error when demand is log-normally distrib-
uted; note that, per Corollary 1 and Proposition 9, the
expression is the same when using the unadjusted
biased order quantity.

Proposition 11. For the log-normal distribution, the profit
expected estimation error E[π(q̂a, θ̂) − π(q̂a, θ)] for q̂a equals

pσ
4n

q 2 + ξ2 − σξ − σ2
( )

ϕ ξ( ) + σ 3 + σ2
( )[

× eμ+σ
2/2Φ ξ − σ( )

]
+ o

1
n

( )
.

Furthermore, the adjusted expected profit for a log-normal
distribution with unbiased estimated parameters μ̂ and σ̂ is

π̂a q̂a, θ̂
( ) � p − c

( )
q̂a − pq̂aΦ

ln q̂a
( ) − μ̂

σ̂

( )
+ peμ̂+σ̂

2/2Φ
ln q̂a

( ) − μ̂ − σ̂2

σ̂

( )
− pσ̂
4n

q̂a 2 + ξ2 − σ̂ξ − σ̂2
( )

ϕ ξ( )[
+ σ̂ 3 + σ̂2

( )
eμ̂+σ̂

2/2Φ ξ − σ̂( )
]
.

4.3. Numerical Verification: Log-Normal
Demand Distribution

As in Section 3.5, we perform numerical experiments
that provide statistical evidence of nontrivial profit
estimation error and now also order-quantity esti-
mation error for the log-normal distribution (a heavy-
tailed distribution; see Foss et al. 2013). Demand is
simulated from a log-normal distribution with mean
200 and standard deviation 65 so that, on the log scale,
we have θ � (μ, σ) � (5.248, 0.317). The remainder of
the experimental setup is as in Section 3.5. We find
that the expected profit is 282.1, and the expected
estimation error is 3.1. Furthermore, in the left plot of
Figure 3 (which uses the bias-adjusted order quantity
while exploring profit bias), we again observe strong
statistical evidence of the nonzero profit expected
estimation error: the unadjusted expected estimation
error shows high statistical significance (t-values in
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the histogram at right are considerably higher than
the 1.96 critical value), which is successfully elimi-
nated by the asymptotic correction (histogram at left
is centered at zero).

In the right plot of Figure 3, we observe similar
evidence for the order quantity: expected estimation
error in the unadjusted order quantity q̂ shows high
statistical significance (t-values in the histogram at
right are considerably higher than the 1.96 critical
value), which is successfully eliminated by the as-
ymptotic correction for the order quantity q̂a (histo-
gram at left is centered at zero). The naive news-
vendor orders, on average, approximately 0.36 to 0.37
more than the true optimal order quantity q � 175.534.
This does notmaterially affect the true expected profit
as is consistent with Proposition 9: using the unad-
justed order quantity q̂ reduces true expected profit by
only an estimated 0.003 from the expected profit es-
timated as 282.1 (0.001%) as compared with the
material expected estimation error of 3.1 (1.1%) as-
sociated with naively computing the profit using θ̂ in
place of the true demand parameter θ.

5. Conclusion
In this paper, in the context of the newsvendormodel,
we show that unbiased estimators of distributional
parameters, when passed through an optimization
operator, result in biased estimates of the optimal
objective function value and, depending on the de-
mand distribution, biased order quantities.We derive
closed-form second order approximations for the
expected estimation errors and use these to form
adjusted expected-profit and order-quantity expres-
sions that can be computed by a newsvendor who
does not know the true demand distribution. We
conduct simulation studies for exponential, normal,
and log-normal demand distribution families and
find statistically significant estimation errors in each
case that are effectively eliminated by our adjustments.

We conclude by commenting on further research. It
would be interesting and practically useful to extend

this work to the case of sales data (i.e., censored de-
mand data). Finally, Although we focused on ana-
lyzing the impact of estimation error for the news-
vendor model, we suspectmany parametric approaches
to optimization under uncertainty that use real data for
estimation are significantly affected by estimation error;
it might be possible to derive closed-form adjustment
terms in other contexts to provide unbiased estimates of
meaningful quantities.
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