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Abstract

We consider the problem minX∈{0,1}n {c′x : a′
j

x�bj , j = 1, . . . , m}, where the aj are random vectors with unknown distributions. The only
information we are given regarding the random vectors aj are their moments, up to order k. We give a robust formulation, as a function of k,
for the 0–1 integer linear program under this limited distributional information.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let x = (x1, x2, . . . , xn) ∈ {0, 1}n be a vector of binary
variables. A generic 0–1 integer linear program is of the fol-
lowing form: minx∈{0,1}n{c′x : a′

j x�bj , j = 1, . . . , m}. We
consider a version of this generic problem where the vec-
tors aj , ∀j are random. Without loss of generality, the values
bj , ∀j and the vector c are deterministic and given. A main
contribution of our paper is that we consider a limited charac-
terization of the random vectors: We are only given moment
information for the random vectors aj , ∀j and we do not know
their actual distributions. In order to characterize the moment
information succinctly, we introduce the following notation,
which originally appeared in Bertsimas and Popescu [4]:
Jk={�=(k1, . . . , kn) : k1+· · ·+kn �k, ki ∈ Z+, i=1, . . . , n}.
We are given the following kth order moment knowledge
for the random vectors aj , ∀j : E[a�

j ]�E[∏n
i=1a

ki

ij ], ∀� ∈
Jk, j = 1, . . . , m, where aij is the ith element of vector
aj . Let �k

j = {E[a�
j ] : � ∈ Jk} denote the collection of all

moments up to order k for the random vector aj . If a dis-
tribution Faj

(·) for aj gives moments in agreement with
�k

j , we denote this as Faj
∼ �k

j and say that Faj
is a valid

distribution. We assume the vectors aj are independent of
each other, but we make no assumptions whatsoever about
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interdependencies between random variables in a given random
vector aj .

Instead of requiring the constraints a′
j x�bj , ∀j to hold

under any realization of the random vectors aj under any
valid distribution (which results in a semi-infinite deter-
ministic problem), we introduce a probabilistic bound on
constraint violations. We are given values pj ∈ (0, 1), ∀j

such that the probability that a′
j x�bj is violated is at most

pj . We require that this probabilistic bound holds for any
valid distribution for aj . Therefore, we replace a′

j x�bj with
maxFaj

∼�k
j

P[a′
j x�bj ]�pj . Our new robust formulation for

the 0–1 integer linear program under limited distributional
information is the following mathematical program, denoted
by MP: minx∈{0,1}n{c′x : maxFaj

∼�k
j

P[a′
j x�bj ]�pj , j =

1, . . . , m}. Let ZMP denote the optimal value of MP. This
model of probabilistically bounded constraint violations is
a flexible, tunable approach that can be feasibly applied in
practice.

We now argue that defining the deterministic parameters
bj , ∀j and c a priori is without loss of generality. Note that a
deterministic linear objective allows us to also solve MP when
the objective function is instead minx maxFc∼�k

c
P[c′x�v],

where v ∈ R is a given value and Fc and �k
c are defined ap-

propriately for a random cost vector c. Furthermore, if any
of the bj parameters are random, we can introduce a new
variable xn+1 and incorporate bj into the vector aj and the
accompanying model of uncertainty.

http://www.elsevier.com/locate/orl
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1.1. Literature review

Stochastic integer programming problems with known dis-
tributions have generated interest in the optimization research
community for many years and the literature is vast. We refer-
ence the interested reader to the website [17], which lists over
250 related journal articles. Additionally, an insightful modern
treatment of deterministic (and robust) integer programming
can be found in Bertsimas and Weismantel [5].

A popular approach to stochastic integer programming is to
consider a recourse model. Generically speaking, these mod-
els require initial as well as secondary (recourse) decisions.
The initial decisions (values for an integer vector) are made
when the problem data are uncertain (usually characterized
by distributions) and the recourse decision is made once the
problem data have been realized. Examples of stochastic in-
teger programming with recourse can be found in CarZe and
Schultz [6], Schultz and Tiedemann [14] and in the references
therein.

Another approach to stochastic integer programming, more
related to our paper, is chance-constrained programming. In
this model, a distribution of the problem data is given and
the probability that a constraint holds must be at least some
given minimal value. Examples of chance-constrained integer
programs can be found in Beraldi and Ruszczynski [2] (in the
context of a probabilistic set-covering problem), Dentcheva,
et al. [7] and in the references therein.

However, approaches to stochastic integer programming un-
der limited distributional information have been rather scarce.
The few existing examples share the common approach of in-
vestigating the optimization of an uncertain cost vector over
a fixed feasible region. Meilijson and Nadas [10] consider a
project management problem where the marginal distributions
for each element of the cost vector are known, but the exact
form of the joint multivariate distribution of the cost vector
is not known; the authors show that an expected cost can be
calculated by solving a convex optimization problem. Weiss
[18] studies a similar approach in the context of the maximum
flow and shortest path problems. Most related to our paper
is the article by Bertsimas et al. [3], which considers generic
integer programs with a random cost vector characterized by
only its moments. For integer programs that are nominally (no
uncertainty in the problem data) solvable in polynomial-time,
they develop an approach based on semidefinite programming
that calculates a tight bound on the expected optimal cost, in
polynomial-time.

Central to our paper is the calculation of optimal probabilis-
tic bounds and we rely on the article by Bertsimas and Popescu
[4] for useful results. These authors calculate, utilizing semidef-
inite programming, optimal bounds for P[y ∈ S], where y is
a random vector characterized only by its moments and S is a
set taking many structural forms. A key to their analysis is the
connection between nonnegative polynomials and semidefinite
programming; these connections are also utilized fruitfully in
our paper. Another good reference for the relations between
polynomials and semidefinite programming (denoted as linear
matrix inequalities) is the article by Lasserre [9].

1.2. Contributions

If we only have first order moment information, we show that
MP is equivalent to a deterministic integer linear program. If
we have second order moment knowledge at our disposal, we
show that MP is a second order cone program (SOCP) with
integer constraints. We propose a branch-and-bound algorithm
that solves MP exactly in this case. We also provide compu-
tational studies that compare the performance of our algorithm
with a branch-and-bound algorithm for a 0–1 integer linear pro-
gram where the problem data are known exactly; i.e., we char-
acterize the additional cost of not having complete knowledge
of the problem data, a practically useful result. If we have mo-
ment knowledge up to order k�3, we show that, for any � > 0,
there exists a semidefinite program whose value is within � of
the optimal value of MP. We also show that solving a sequence
of semidefinite programs allows us to asymptotically find the
value of MP.

Next we position our paper by comparing our results with
those in the literature. There has been a large amount of re-
search investigating integer programs under uncertainty in the
data (see [17]). The majority of these approaches, however, as-
sume that the distributions of the problem data are known. One
of our main contributions is that we consider uncertain prob-
lem parameters with unknown distributions; the only informa-
tion we are given are the moments. The one article that we
are aware of that takes a similar approach to ours is Bertsimas
et al. [3]; their article considers the optimization of a random
cost vector, with known moments and unknown distribution,
over a fixed feasible region. Our approach is similar, except
that we also consider uncertainty in the constraint vectors—in
other words, we study the optimization of a random cost vec-
tor over a random feasible region. In the situation where we
have lower order moment information, we focus on practically
efficient (e.g., branch-and-bound) rather than theoretically ef-
ficient (i.e., polynomial-time) algorithms that are the focus of
[3]. Therefore, our approach is valid for a larger class of inte-
ger programs, since the theoretically efficient approach in [3] is
only appropriate for integer programs whose nominal versions
are solvable in polynomial-time. For problems where there is
higher order moment information available for the data, our ap-
proach is more theoretical and structural in spirit and is similar
to the general approach in [3].

Outline: In Sections 2.1 and 2.2 we study MP when we
have first and second order moment information, respectively.
In Section 3 we study MP when we have k�3 order moment
information and in Section 4 we numerically solve MP under
second order moment knowledge and compare our solution with
that of the problem under perfect knowledge of the constraint
vectors.

2. Lower order moment knowledge

In this section, we study MP when we only have lower
order moment information. In particular, we consider k ∈ {1, 2}
and we show that in both cases we are able to solve MP
exactly.
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2.1. First order moment knowledge: k = 1

In this section, we require that aj �0 and bj �0, ∀j . We are
given the first order moments of the constraint vectors; i.e., we
are given E[aj ], j = 1, . . . , m.

Theorem 2.1. If aj �0, bj �0, ∀j and we are given E[aj ], ∀j ,
then an equivalent formulation for MP is the follow-
ing deterministic integer linear program, denoted by IP:
minx∈{0,1}n{c′x : E[aj ]′x�pjbj , j = 1, . . . , m}.

Proof. It has been shown (e.g., see [4], Section 5) that the stan-
dard Markov Inequality is tight; i.e., maxFaj

∼�1
j

P[a′
j x�bj ] =

min
(
1, E[aj ]′x/bj

)
. Since pj < 1, ∀j , applying this equation

to our definition of MP, we obtain IP. �

2.2. Second order moment knowledge: k = 2

In this section we investigate the case where we have
first and second order moment information for the con-
straint vectors. Specifically, we are given E[a�

j ], ∀� ∈
J2, j =1, . . . , m. Given this moment information, it is straight-
forward to calculate the covariance matrix �j for each aj :

�
j
ik =E

[(
aij − E[aij ]

) (
akj − E[akj ]

)]
, ∀i, k=1, . . . , n, where

�
j
ik is the value in the ith row and kth column of �j and aij is

the ith element of vector aj . The expected values and variances
for the scalar random variables a′

j x, ∀j , as functions of x, are

E[aj ]′x and x′�j x, respectively.

Theorem 2.2. If we are given E[a�
j ], ∀� ∈ J2, j = 1, . . . , m,

then an equivalent formulation for MP is the following,

denoted by CP: minx∈{0,1}n{c′x :
√

x′�j x�
√

pj

1−pj

(
bj−

E[aj ]′x
)
, j = 1, . . . , m}.

Proof. Consider the following variant of the Chebyshev In-
equality: If y is a random variable with mean � and variance
�, then P[y�(1 + �)�]� �

�+�2�2 , where � is a given constant.

It has been shown (e.g., see [4]) that this bound is tight in the
sense that there exists a distribution with mean � and variance �
where P[y�(1+�)�]=�/(�+�2�2). Consequentially, setting
� = bj /

(
E[aj ]′x

) − 1, we can write maxFaj
∼�2

j
P[a′

j x�bj ] =
x′�j x

x′�j x+(E[aj ]′x)2�2 . Rearranging terms, we obtain CP. �

Note that if we relax the integer constraint, the resulting
problem is a SOCP since the covariance matrix �j is positive
semidefinite. It is well known that SOCPs can be solved in
polynomial-time using interior point methods (e.g., see Rene-
gar [12]). Therefore, this observation leads us to propose a
simple branch-and-bound algorithm, with a SOCP solver as a
subroutine, for solving CP exactly.

2.2.1. A branch-and-bound algorithm for CP
In this section we assume that CP is feasible. Let ZCP

denote the value of CP and K = {0, 1}n denote the set of

possible integer solutions for CP. If X = {x : xi ∈ {0, 1}, i ∈
I, x ∈ Y }, let R(X) = {x : 0�xi �1, i ∈ I, x ∈ Y } denote the
set that relaxes the binary constraints of X. Define CP(X) as

minx∈X{c′x :
√

x′�j x�
√

pj

1−pj
(bj − E[aj ]′x), j = 1, . . . , m}

and let ZCP(X) denote its value. Note that ZCP({0,1}n) = ZCP

and CP(R(X)) is a SOCP for any set X ⊆ {0, 1}n. The branch-
and-bound algorithm BB for solving CP is as follows:
BB:
• Initialization:

(1) Set the initial queue Q = {K}.
(2) Find an initial upper bound U for ZCP;

e.g., U = ∑
i:E[ci ]�0 E[ci].

• Loop:
(1) If Q is empty, stop. The current value

in x∗ is optimal.
(2) Choose the first element X of the queue

Q and remove it. If ZCP(R(X)) �U or if
CP(R(X)) is infeasible, go to step 1.

(3) If the solution to ZCP(R(X)) is integer,
set x∗ to be this solution and set U =
ZCP(R(X)). Go to step 1.

(4) Find the smallest index i such that xi

is not integer. Insert X1 = X ∩ {xi = 0}
and X2 = X ∩ {xi = 1} into the queue Q. Go
to step 1.

3. Higher order moment knowledge

We now consider the general case where we have up to kth or-
der moment information for the random vectors aj : E[a�

j ], ∀� ∈
Jk, j = 1, . . . , m. Before we begin, we need some technical
preliminaries.

3.1. Nonnegative Polynomials and Semidefinite Programming

We begin this technical section with the notion of a sum-
of-squares (SOS) polynomial. A function f (x) is a SOS poly-
nomial if there exist polynomial functions hi(x), i = 1, . . . , N

(for some finite N) such that f (x) = ∑N
i=1 h2

i (x).
A function that is a SOS polynomial is clearly nonnegative.

For univariate functions, a SOS representation of a function is
equivalent to the nonnegativity of the function. However, for
multivariate functions, this is not the case: There exist nonneg-
ative functions that do not have a SOS representation (e.g., see
Reznick [13]).

We next present several useful results that link nonnega-
tive polynomials with positive semidefinite matrices. We first
present results for univariate polynomials and then multivariate
polynomials.

Lemma 3.1 (Bertsimas and Popescu [4]). The univariate poly-
nomial g(x) = ∑2k

r=0 yrx
r satisfies g(x)�0 for all x ∈ R if

and only if there exists a matrix X = [xij ]i,j=0,...,k , such that
yr = ∑

i,j :i+j=r xij , r = 0, . . . , 2k, X 	 0.

Lemma 3.2 (Bertsimas and Popescu [4]). The univariate poly-
nomial g(x) = ∑k

r=0 yrx
rsatisfies g(x)�0 for all x ∈ [a, ∞)
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if and only if there exists a matrix X = [xij ]i,j=0,...,k , such

that 0 = ∑
i,j :i+j=2l−1 xij , l = 1, . . . , k,

∑k
r=l yr

(
r
l

)
ar−l =∑

i,j :i+j=2l xij , l = 0, . . . , k, and X 	 0.

For the next lemma, we need additional notation: let x(d)

be a vector of all monomials with degree less than or equal
to d of the vector x = (x1, . . . , xn). For convenience, we use
x(d) = (1, x1, . . . , xn, x1x2, . . . , x1xn, . . . , x

2
n, . . . , xd

n ). The di-

mension of x(d) is
∑d

i=0

(
n
i

) =
(

n+d
d

)
.

Lemma 3.3 (Bertsimas and Popescu [4]). The multivariate
polynomial f (x) of degree 2d has a SOS decomposition if and
only if there exists a positive semidefinite matrix Q for which
f (x) = x′

(d)Qx(d).

Finally, we present a useful theorem due to Putinar [11].

Theorem 3.4 (Putinar [11]). Suppose that the set K = {x ∈
Rn|gi(x)�0, i ∈ I } is compact and there exists a polynomial
h(x) of the form h(x)=h0(x)+∑

i∈I hi(x)gi(x), such that {x ∈
Rn|h(x)�0} is compact and hi(x), i ∈ I ∪{0} are polynomials
that have a SOS representation. Then, for any polynomial g(x)

that is strictly positive for all x ∈ K , there exist polynomials
si(x), i ∈ I ∪ {0} that are SOS polynomials such that g(x) =
s0(x) + ∑

i∈I si(x)gi(x).

Note that this theorem does not provide any information
regarding the dimensions of the polynomials si(x). However,
it has been noted by numerous authors (e.g., [4,9]) that the
conditions of Theorem 3.4 are not that restrictive. For example,
the conditions hold if (1) the variables are all binary or (2) if
there is a single constraint function gi such that {gi(x)�0} is
compact or (3) if there is a constraint g(x) = a2 − ‖x‖2 �0 for
a sufficiently large value of a.

We conclude this technical section with a useful characteri-
zation of positive semidefinite matrices, which is traditionally
known as Sylvester’s Criterion.

Definition 3.5. If X is an n-dimensional symmetric matrix, then
for any S ⊆ {1, . . . , n}, S = ∅, XS is the submatrix of X that
corresponds to elements in the rows and columns indexed by S.
XS is commonly known as a principal minor of the matrix X.

Lemma 3.6 (Swamy [16]). X is positive semidefinite if and
only if the determinants of all its principal minors are nonneg-
ative: X 	 0 ⇐⇒ det(XS)�0, ∀S ⊆ {1, . . . , n}, S = ∅.

Remark 3.7. Note that Sylvester’s Criterion is markedly sim-
pler in the characterization of positive definite matrices, since
only the leading principal minors need to be considered: X �
0 ⇐⇒ det(XS) > 0, S = {1, . . . , k}, k = 1, . . . , n.

3.2. An Asymptotically Exact Approximation for MP

For simplicity, we first consider a single constraint and
later generalize to the full problem. Consider the simplified

problem S and let ZS denote its value: minx∈{0,1}n{c′x :
maxFa∼�k P[a′x�b]�p}.

Consider the random variable a′x. Let Mr(x) = E[(a′x)r ],
r = 0, . . . , k, denote the rth moment of a′x. Note that Mr(x) is
a multivariate polynomial of degree r. Our subsequent analysis
is based on the approach in [4] to calculate optimal bounds on
P[y ∈ S] where y is a random vector with given moments and
S is a set taking many structural forms; the difference in our
approach is that we are analyzing a random variable a′x that is a
function of the decision variable x of the optimization problem
S (and MP). We begin with an assumption that allows us to
use a strong duality result.

Assumption 3.8. For any x ∈ {0, 1}n, the moment vector
(M0(x), . . . , Mr(x)) is in the interior of the set of all possible-
moment vectors for a′x.

Lemma 3.9. An equivalent formulation for maxFa∼�k P

[a′x�b] is the dual D: miny{∑k
r=0 yrMr(x) : ∑k

r=0 yrz
r �0,

∀z ∈ R,
∑k

r=0 yrz
r �1, ∀z�b}.

Proof. The expression maxFa∼�k P[a′x�b] is equivalent to
P: max�{∫R 1(z�b) d� : ∫

R zr d� = Mr(x), r = 0, . . . , k,
��0 a.e.}, where � is a distribution for z = a′x. The dual
of P is D: miny{∑k

r=0 yrMr(x) : ∑k
r=0 yrz

r �0, ∀z ∈
R,

∑k
r=0 yrz

r �1, ∀z�b}.
Let the optimal values of the primal and dual problems be

denoted as ZP and ZD, respectively. Assumption 3.8 allows
strong duality ZP=ZD to hold (e.g., see Shapiro [15]) and the
proof is complete. �

Note that the value of any feasible solution for D is an
upper bound for maxFa∼�k P[a′x�b]. Therefore, the fol-
lowing is an equivalent description of S: minx,y{c′x :∑k

r=0 yrMr(x)�p,
∑k

r=0 yrz
r �0, ∀z ∈ R,

∑k
r=0 yrz

r �1,

∀z�b, x ∈ {0, 1}n}. Note that this representation of S is a
semi-infinite mathematical program (i.e., a finite number of
variables and an infinite number of constraints). We next show
that S can be characterized with a finite number of constraints,
albeit with an increase in the dimension of the problem.

Theorem 3.10. There exists a finite-dimensional vector c̃ and
a finite number of polynomial functions gi(·), i ∈ I such that
S is equivalent to minw{c̃′w : gi(w)�0, i ∈ I }.

Proof. Consider the representation of S that was just derived.
For simplicity, we assume k is even. Applying Lemma 3.1,
we rewrite the second polynomial constraint as a semidefi-
nite constraint: yr =∑

i,j :i+j=rpij , r = 0, . . . , k, P 	 0, where
P = [pij ]i,j=1,...,k/2 is a symmetric matrix of dimension k/2.
Lemma 3.6 states that P 	 0 is equivalent to det(PS)�0, ∀S ⊆
{1, . . . , k/2}, S = ∅, where PS is the submatrix of P con-
sisting of the rows and columns indexed by S and det(PS)

is its determinant. For any S, det(PS) is a polynomial in the
coefficients of the matrix P. Therefore, the second polyno-
mial constraint of S can be represented as a finite set of
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inequalities:

yr �
∑

i,j :i+j=r

pij , r = 0, . . . , k, (1)

yr �
∑

i,j :i+j=r

pij , r = 0, . . . , k, (2)

det(PS)�0 ∀S ⊆ {1, . . . , k/2}, S = ∅. (3)

Similarly, applying Lemma 3.2, the third constraint in S is
equivalent to

0�
∑

i,j :i+j=2l−1

qij , l = 1, . . . , k, (4)

0�
∑

i,j :i+j=2l−1

qij , l = 1, . . . , k, (5)

k∑
r=l

yr

( r

l

)
br−l �

∑
i,j :i+j=2l

qij , l = 1, . . . , k, (6)

k∑
r=l

yr

( r

l

)
br−l �

∑
i,j :i+j=2l

qij , l = 1, . . . , k, (7)

Q 	 0, (8)

where Q = [qij ]i,j=1,...,k/2 is a symmetric matrix of dimension
k/2. Again applying Lemma 3.6, Eq. (8) can be written as
another finite set of inequalities

det(QS)�0 ∀S ⊆ {1, . . . , k/2}, S = ∅, (9)

where QS are the submatrices of Q. Finally, notice that

{0, 1}n = {x ∈ Rn|x2
i − xi �0, xi − xmathrm2

i �0}, (10)

a finite set of inequalities. Combining Eqs. (1)–(7), (9), and
(10) and the first polynomial constraint of S, we obtain an
equivalent description of the feasible region of S using a finite
set of polynomial inequalities. Letting p (resp. q) denote the
vector of coefficients of matrix P (resp. Q), defining the aggre-
gate variable w = (x, y, p, q) and c̃ = (c, 0, 0, 0) completes the
proof. Note that the dimension of w is k2/2 + k + n + 1. �

Let K = {w : gi(w)�0, i ∈ I }. Note that Theorem 3.10
gives the following equivalent description of S:

ZS = min
w∈K

c̃′w. (11)

Theorem 3.11. If K satisfies the conditions of Theorem 3.4,
then for any � > 0, there exists a semidefinite program whose
value is greater than or equal to ZS − �.

Proof. Note that Eq. (11) implies

c̃′w − ZS�0 ∀w ∈ K , (12)

with equality at the optimal value of w. Fix � > 0 and let
z = ZS − �. Consider the following strict inequality version
of Eq. (12):

c̃′w − z > 0 ∀w ∈ K . (13)

Theorem 3.4 states that there exist an integer d, that depends
on z and �, and polynomials si(w), i ∈ I ∪ {0} of degree 2d

that are SOS such that

c̃′w − z = s0(w) +
∑
i∈I

si(w)gi(w). (14)

Let l denote the dimension of w and let � = (�1, . . . , �l )

and w� = w
�1
1 · · · w�l

l . The highest dimensional polynomial
inequality defining K is the first constraint in S, which has
dimension k. Therefore, for each i ∈ I , there exists a sequence
{�i

�} such that gi(w)=∑
�∈Jk

�i
�w�, i ∈ I , where Jk is redefined

as Jk = {(k1, . . . , kl) : k1 + · · · + kl �k, ki ∈ Z+, i = 1, . . . , l}.
Similarly, there exist sequences {si

�}, i ∈ I ∪ {0} such that

si(w) = ∑
�∈J2d

si
�w�, i ∈ I ∪ {0}. Eq. (14) can be written as

c̃′w − z =
∑

�∈J2d

s0
�w� +

∑
i∈I

⎛
⎝ ∑

�∈J2d

si
�w�

⎞
⎠

⎛
⎝∑

	∈Jk

�i
	w	

⎞
⎠

=
∑

�∈J2d

s0
�w� +

∑
i∈I

∑
�∈J2d
	∈Jk

si
��i

	w�+	. (15)

Recall that the first n elements of c̃ correspond to c (and x)
and the remaining coefficients are zero. We equate the coeffi-
cients of both sides of Eq. (15) to obtain the following con-
straints.

ci = s0
� +

∑
i∈I

(si
��i

0 + si
0�

i
�),

�i = 1, �j = 0, j = i, i = 1, . . . , n;

0 = s0
� +

∑
i∈I

∑
�∈J2d
	∈Jk

�+	=�

si
��

i
	,

∀� ∈ J2d+k\{�i = 1, �j = 0, j = i, i = 1, . . . , n, � = 0};
− z = s0

0 +
∑
i∈I

si
0�

i
0.

Next, we express the SOS polynomials si(·) as semidefinite
constraints, utilizing Lemma 3.3: There exist positive semidef-
inite matrices Si 	 0, i ∈ I ∪ {0} such that si(x) = x′

(d)S
ix(d).

Writing Si =[si
�,	]�,	∈Jd

, the following constraints are clear:

si
� =

∑
�,	∈Jd

�+	=�

si
�,	 ∀� ∈ J2d , i ∈ I ∪ {0}.
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Therefore, the following semidefinite program finds a SOS
representation of Eq. (13) and a value Z(d) that is within � of
the optimal solution ZS.

Z(d)� max
Si ,z

z

s.t. ci = s0
� +

∑
i∈I

(si
��i

0 + si
0�

i
�),

�i = 1, �j = 0, j = i, i = 1, . . . , n;

0 = s0
� +

∑
i∈I

∑
�∈J2d
	∈Jk

�+	=�

si
��

i
	,

∀� ∈ J2d+k\{�i = 1, �j = 0,

j = i, i = 1, . . . , n, � = 0};
− z = s0

0 +
∑
i∈I

si
0�

i
0;

si
� =

∑
�,	∈Jd

�+	=�

si
�,	,

∀� ∈ J2d , i ∈ I ∪ {0};
Si 	 0, i ∈ I ∪ {0}. �

Note that Theorem 3.11 only proves the existence of a
semidefinite program for finding an �-approximate solution to
S. However, for any fixed value of d, the semidefinite program
gives a lower bound for ZS. As d increases, the quality of
the lower bound increases as well. Asymptotically, we obtain
the solution value ZS. This observation is formalized in the
following corollary.

Corollary 3.12. The semidefinite programs with values Z(d)

asymptotically approach ZS; i.e., limd→∞Z(d) ↑ ZS.

The analysis in this section for the single constraint in S
can simply be repeated for each constraint of MP. Therefore,
letting KMP denote the feasibility set for MP that corresponds
to K in this section, we have the following results.

Theorem 3.13. If KMP satisfies the conditions of Theorem 3.4,
then for any � > 0, there exists a semidefinite program whose
value is greater than or equal to ZMP − �.

Corollary 3.14. The semidefinite programs (appropriated gen-
eralized for MP) with values Z(d) asymptotically approach
ZMP; i.e., limd→∞Z(d) ↑ ZMP.

4. Computational study

In this section we implement the branch-and-bound algo-
rithm BB, given in Section 2.2.1, for solving CP (MP un-
der second order moment knowledge) exactly. We compare its
performance with a standard branch-and-bound algorithm for

solving the underlying 0–1 integer linear program with known
data. In particular, we examine how well our robust formulation
approximates the actual underlying integer linear program.

We implement BB in MATLAB [1]. More specifically, we
modify the MATLAB bintprog (a branch-and-bound algo-
rithm for solving 0–1 linear programs) procedure to utilize
the Disciplined Convex Programming [8] package to solve the
SOCP relaxations. We compare our algorithm’s performance
with that of bintprog on the underlying 0–1 integer linear
program where the problem data are known exactly. Our im-
plementation of BB utilizes the default options for bintprog:
The branching strategy is to choose the variable with the max-
imum infeasibility (i.e., the variable with value closest to 0.5)
and the node search strategy is to choose the node with the
lowest bound on the objective function.

4.1. Experimental design

Consider fixed values of m and n. For each constraint j =
1, . . . , m of CP, we randomly generate the covariance ma-
trix �j of the constraint vector aj in the following manner:
�j = �′

j�j , where �j is an n × n matrix whose elements are
i.i.d. realizations of the standard normal distribution; this de-
sign results in a positive semidefinite matrix �j , which is nec-
essary for a covariance matrix. Likewise, the elements of the
mean vector E[aj ] are i.i.d. realizations of the standard normal
distribution. The scalar value bj is an i.i.d. realization of a nor-
mal distribution with a mean of 50 and a variance of 1; we uti-
lize this specific normal distribution to decrease the frequency
of infeasible integer programs. We fix pj = p, ∀j and we con-
sider p ∈ {0.01, 0.05}. Finally, the elements of the cost vector
c are also i.i.d. realizations of the standard normal distribution.

The parameters c, �j , E[aj ], bj and pj , j =1, . . . , m are the
problem data for CP. We compare the performance of CP with
that of a 0–1 integer linear program with known data. To create
this data, we let the constraint vector aj be a realization of a
multivariate normal distribution with covariance matrix �j and
mean vector E[aj ]. The parameters c, aj and bj , j = 1, . . . , m

are used to solve the deterministic 0–1 integer linear program
that underlies CP.

We consider the following combinations of (m, n): (5,2),
(10,5) and (25,10). For each combination of (m, n) we repeat
the above procedure 50 times and report the average objective
values of BB and bintprog. We also report the average run-
times of BB and bintprog.

4.2. Results

In this section, we present the results of our computational
study.

Our computational results indicate that the objective value
output by our robust formulation is a rather tight approximation
for the underlying 0–1 integer linear program, for the smaller
problem instances and at a higher computational cost. There-
fore, if extra computational power is available, requiring exact
knowledge of the constraint vectors is not absolutely necessary
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Table 1
Comparison of BB with bintprog for p = 0.01

(m, n) BB objective BB runtime (s) bintprog Objective bintprog Runtime (s)

(5, 2) −0.9491 0.3344 −1.0526 0.0191
(10, 5) −0.8882 1.9325 −1.9307 0.0213
(25, 10) 0.0000 14.3731 −4.2250 0.0288

All values reported are the average of 50 trials and are accurate to four decimal places.

Table 2
Comparison of BB with bintprog for p = 0.05

(m, n) BB objective BB runtime (s) bintprog Objective bintprog Runtime (s)

(5, 2) −0.9727 0.2916 −0.9790 0.0156
(10, 5) −1.9432 1.2941 −2.0725 0.0194
(25, 10) −1.5077 25.2953 −3.9960 0.0269

All values reported are the average of 50 trials and are accurate to four decimal places.

for smaller instances. Our results suggest that, practically, sta-
tistical estimates of the constraint vectors can provide a good
approximation of the underlying 0–1 integer linear program.
This observation is important since, in practice, increasing com-
putational power is generally less costly than obtaining more
accurate information about the constraint vectors. Our study
also suggests that the approximating power of our robust for-
mulation deteriorates as the problem size increases. We also
note that the approximating performance of BB improves as p,
the probability that a constraint is violated, is increased. Fi-
nally, note that in Table 1, for m= 25 and n= 10, it seems that
the experimental design resulted in feasible regions where the
zero vector was the only feasible solution. In Table 2, we see
that by relaxing the constraints (i.e., increasing p), we obtain
non-trivial solutions for m = 25 and n = 10.
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