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We consider online routing optimization problems where the objective is to minimize the time needed to visit a set of
locations under various constraints; the problems are online because the set of locations are revealed incrementally over
time. We consider two main problems: (1) the online traveling salesman problem (TSP) with precedence and capacity
constraints, and (2) the online TSP with m salesmen. For both problems we propose online algorithms, each with a
competitive ratio of 2; for the m-salesmen problem, we show that our result is best-possible. We also consider polynomial-
time online algorithms.
We then consider resource augmentation, where we give the online servers additional resources to offset the powerful

offline adversary advantage. In this way, we address a main criticism of competitive analysis. We consider the cases where
the online algorithm has access to faster servers, servers with larger capacities, additional servers, and/or advanced in-
formation. We derive improved competitive ratios. We also give lower bounds on the competitive ratios under resource
augmentation, which in many cases are tight and lead to best-possible results.
Finally, we study online algorithms from an asymptotic point of view. We show that, under general stochastic structures

for the problem data, unknown and unused by the online player, the online algorithms are almost surely asymptotically
optimal. Furthermore, we provide computational results that show that the convergence can be very fast.
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1. Introduction
The traveling salesman problem (TSP) is a very important
problem in operations research; TSP solutions are valuable
in their own right as well as in the solution of more com-
plicated problems. In a common version of the TSP, we
are given a metric space and a set of points in the space,
representing cities. Given an origin city, the task is to find a
tour of minimum total length, beginning and ending at the
origin, that visits each city at least once. Assuming a con-
stant speed, we can interpret this objective as minimizing
the time required to complete a tour. We may also incorpo-
rate release dates, where a city must be visited on or after
its release date. In this case, the problem is known as the
“TSP with release dates.”
Additional constraints can be added to the above sales-

man problems. We will consider several in this paper. The
salesman can be considered a vehicle/server that trans-
ports packages and/or people. We can introduce precedence
constraints where some cities must be visited before oth-
ers. Precedence constraints are appropriate, for example, if
packages/people have to be picked up at one location and

delivered to another location. It is also natural to introduce
a capacity for the server; in other words, a server can visit
only a subset of all cities in a given tour and must traverse
multiple tours. Finally, we consider the case where we have
multiple servers to manage. In this paper, we are concerned
with online versions of the above mentioned routing opti-
mization problems. In our framework, the problem data are
revealed dynamically over time, independent of the server’s
location, at release dates.
It is well established that the assumption that problem

instances are completely known a priori is unrealistic in
many applications. There exist numerous approaches for
solving optimization problems under uncertainty. Assum-
ing a probabilistic distribution or process for the prob-
lem data leads to stochastic and dynamic programming
formulations. However, this approach generally requires
accurate probabilistic distributions. In practice, there might
not be sufficient data to estimate these distributions accu-
rately. This is the case particularly when one considers a
new market or industry, or even when a known industry
is in a period of upheaval. Therefore, more conservative
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approaches are needed. A popular approach to optimiza-
tion under uncertainty is robust optimization (e.g., see
Ben-Tal and Nemirovski 2000). The basic framework of
robust optimization is to introduce sets for uncertain prob-
lem parameters rather than distributions. Attempts to make
robust optimization less conservative have also been suc-
cessful (e.g., see Bertsimas and Sim 2003). Our approach,
online optimization, is a different approach to optimization
under uncertainty, which is more appropriate for sequential
decision-making problems where probabilistic distributions
are not available. For example, taxi services, buses, and
courier services require an online model in which loca-
tions to be visited are revealed over time, while the server
is en route serving previously released requests. Because
online optimization is also a conservative approach, we do
make attempts to relax this aspect in the form of resource
augmentation.
The focus of this paper is on studying algorithms for

a variety of online routing problems. They are evaluated
using the competitive ratio criteria, which is defined as the
worst-case ratio of the online algorithm’s cost to the cost
of an optimal offline algorithm, where all data are known
a priori. We also say that an algorithm is c-competitive if
the competitive ratio of the algorithm is at most c. We call
an online algorithm (or competitive ratio) best-possible if
there does not exist another online algorithm with a strictly
smaller competitive ratio. We provide online algorithms for
new online routing problems, and we derive new competi-
tive ratio bounds. A number of our competitive ratio results
are best-possible.
The competitive ratio is a conservative worst-case mea-

sure, but it does provide a guarantee of a minimal level of
performance. From a practitioner’s point of view, a com-
petitive ratio can provide a benchmark from which to com-
pare other solution approaches. We do not claim that our
approach is appropriate for solving all routing problems
under uncertainty, but we do believe it is appropriate for
problems where there is little information to character-
ize the uncertainty. For example, suppose that FedEx has
expanded to serve (i.e., a specialized service such as same
day delivery) a new market, perhaps in a new city or sim-
ply in a new neighborhood. Initially, no data are available
for this new market, and online optimization is a valid
approach. Once a sufficient amount of data is collected, a
stochastic optimization approach could then be more appro-
priate. The research in this paper also serves as a starting
point for routing optimization problems under partial uncer-
tainty. For example, there might exist an underlying distri-
bution for the problem data, but we know only the mean of
the distribution. Similar approaches have been taken in the
revenue management and supply chain literature; see Ball
and Queyranne (2006), Lan et al. (2007), and Perakis and
Roels (2006a, b).
We also study resource augmentation, where we give

the online algorithm additional resources with respect to
the offline algorithm. From a theoretical point of view, re-
source augmentation allows us to preclude the (usually)

pathological worst-case examples that induce competitive
ratios. With resource augmentation in place, we derive
improved competitive ratios. We consider speed, capac-
ity, server, and information augmentation. The information
augmentation that we consider is in the form of advanced
notice. In other words, the online algorithm receives a
“heads up” that a request is coming in the near future. For
example, a customer can call for a taxi at 3 p.m. and request
a pickup at 3:30 p.m. The half-hour difference between the
customer’s calling a taxi and the pickup is the advanced
notice. We quantify the improvement in competitive ratio as
a function of requests’ advanced notice. The other forms of
resource augmentation that we consider allow us to quan-
tify the value of adding additional resources. For example,
our results allow us to answer the following questions: How
much can we improve our worst-case performance if we
add vehicles to our fleet or increase the capacity of our
vehicle?
We also derive lower bounds for competitive ratios with

or without resource augmentation. In many cases, our lower
bounds are tight, implying best-possible competitive ratios.
Finally, we investigate the asymptotic behavior of online
algorithms under probabilistic assumptions. We show that
many online algorithms are almost surely asymptotically
optimal. We complement these theoretical results with com-
putational studies, which show that the convergence to opti-
mality can be very fast. From a practical point of view, we
can say that if our problem instance is large enough, the
additional cost of handling a dynamic optimization prob-
lem under uncertainty, compared to having all information
a priori, is negligible. Furthermore, our computational stud-
ies suggest that “large enough” can actually be quite small:
For 20 cities in the standard online TSP model, our com-
puted online cost is at most 10% higher than optimal.

1.1. Literature Review

Research concerning online versions of the TSP have been
introduced relatively recently. Most related to our paper is
the stream of works that started with the paper by Ausiello
et al. (2001). In this paper, the authors studied the online
TSP, which is a special case of the problems we con-
sider here. They analyzed the problem on the real line and
on general metric spaces, developing online algorithms for
both cases and achieving a best-possible online algorithm
for general metric spaces, with a competitive ratio of 2.
These authors also provide a polynomial-time online algo-
rithm, for general metric spaces, which is 3-competitive.
Subsequently, the paper by Ascheuer et al. (2000) implies
the existence of a polynomial-time algorithm for general
metric spaces, which is 2.65-competitive, as well as a
�2+ ��-competitive (� > 0) algorithm for Euclidean spaces.
There has also been work on generalizing the basic

online TSP framework. The paper by Feuerstein and
Stougie (2001) considers the online dial-a-ride problem,
where each city is replaced by an origin-destination pair.
The authors consider both the uncapacitated case, giving
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a best-possible 2-competitive algorithm, and the capaci-
tated case, giving a 2.5-competitive algorithm. The paper
by Ascheuer et al. (2000) also gives a 2-competitive online
algorithm and a �1+√

1+ 8��/2-competitive polynomial-
time online algorithm for the uncapacitated online dial-a-
ride problem (� being the approximation ratio of a simpler
but related offline problem). Their algorithm is general-
izable to the case where there are multiple servers with
capacities; this generalization is also 2-competitive. Other
groups of researchers have generalized the online TSP in
other ways: Ausiello et al. (2005) have studied the online
asymmetric TSP, Ausiello et al. (2004) have studied the
online quota TSP, and Blom et al. (2001) have considered
the online TSP under different adversarial models.
There has been limited work in multiple vehicle online

routing problems. As mentioned previously, Ascheuer et al.
(2000) give a 2-competitive online algorithm for the online
dial-a-ride problem with multiple servers and capacity con-
straints. Bonifaci and Stougie (2007) study the online TSP
with m salesmen. For the case where all cities are on
the real line, these authors give an asymptotically (as
m→�) optimal online algorithm. These authors also focus
on resource augmentation with respect to the number of
vehicles: The online algorithm has m salesmen, and the
offline algorithm has m∗ � m salesmen. These authors
give an online algorithm that is �1 + √

1+ 1/2�m/m∗�−1�-
competitive. Ausiello et al. (2006) also consider the behav-
ior of online routing algorithms as a function of the number
of servers.
In general, resource augmentation for online problems

was introduced by Sleator and Tarjan (1985), who show
that it is possible for an online paging algorithm to have
a constant competitive ratio if it is given a constant frac-
tion more cache locations than the offline algorithm. Server
resource augmentation was considered by Young (1994)
for the k-server problem and by Kalyanasundaram and
Pruhs (2000a) for the online weighted-matching prob-
lem. Kalyanasundaram and Pruhs (2000b) consider speed
and processor augmentation in online machine scheduling.
In Jaillet and Wagner (2006), information augmentation
is present in the form of disclosure dates; a similar
approach was taken by Allulli et al. (2005) in the form
of a lookahead. Other frameworks for addressing the lim-
itations of the competitive ratio have also been intro-
duced; see Ben-David and Borodin (1994), Koutsoupias
and Papadimitriou (2000), and Raghavan (1992).
Studies considering the asymptotic analysis of online

routing problems have been very limited. Hiller (2005)
performs an asymptotic probabilistic competitive analy-
sis of an online dial-a-ride problem on trees. A number
of asymptotic optimality results have been given in the
online machine scheduling literature; e.g., see Chou et al.
(2006a, b) and Liu et al. (2005).

1.2. Our Contributions

We first consider single-server online routing problems with
precedence and capacity constraints. We give an online

algorithm that is 2-competitive; the power of this statement
is that adding general precedence and capacity constraints
to the online TSP does not increase the competitive ratio.
Our result can be contrasted with a result in Ascheuer
et al. (2000), which gives a 2-competitive online algo-
rithm for the online dial-a-ride problem with multiple
servers and capacity constraints. This result is more gen-
eral than ours because it combines multiple servers with
capacity constraints. However, in a different sense, this
result is also simpler than ours because it considers only
an origin-destination precedence constraint (our precedence
constraints are more general) as well as unit demands
(we allow for arbitrary demands). Considering polynomial-
time algorithms, a modification to our algorithm is 2�-
competitive, where � is the approximation ratio of a simpler
offline problem. Ascheuer et al. (2000) give an improved
result, a �1+√

1+ 8��/2-competitive algorithm, but for the
simpler online dial-a-ride problem with one server and no
capacity constraints.
Next, we study multiple-server routing problems (with-

out precedence and capacity constraints) and show similar
results to those just mentioned. We design a new algorithm
with a competitive ratio of 2, a result that is best-possi-
ble. This matches a 2-competitive algorithm that is implied
in Ascheuer et al. (2000), which is for the more general
online dial-a-ride problem. A modification of our algorithm
again results in a polynomial-time online algorithm that is
2�-competitive. We are not aware of any other polynomial-
time algorithms for online multiple-vehicle routing prob-
lems. We note that adding servers to the problem statement
does not increase or decrease the competitive ratio with
respect to the online TSP.
Next, we consider resource augmentation. For single-

server problems with speed augmentation (with both
precedence and capacity constraints), we show our polyno-
mial-time online algorithm is �1+�2�−1�/
�-competitive,
where 
 � 1 is the speed of the online server (the offline
server moves at unit speed). If we do not restrict our algo-
rithms to run in polynomial time, we can show the com-
petitive ratio of our algorithm is 1+ 1/
, and this result is
best-possible. We are not aware of any other similar results
in the literature. For multiple-server problems, we consider
speed and server augmentation (without precedence and
capacity constraints); we show that our algorithm is �1+
��1− �m− 1���/
 + ��− 1�/
�-competitive, where m is
the number of online servers (the offline has a single server)
and � is a measure of the problem data. The reader may
constrast our result with the vehicle augmentation result
of Bonifaci and Stougie (2007). When the online algo-
rithm has m servers and the offline algorithm has m∗ �m
servers, the authors give an online algorithm that is �1+√
1+ 1/2�m/m∗�−1�-competitive. This result is more general

than ours in the sense that they allow the offline to have
any number of servers, not just a single server as in our
case. Furthermore, they do not require a measure of the
problem data (�) as we do. However, our result is more
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general than theirs because we can simultaneously show the
impact of speed augmentation for polynomial-time algo-
rithms. Comparing the two results equitably (setting 
 =
�=m∗ = 1), our competitive ratio bound is �2− �m−1���
and theirs is �1+√

1+ 1/2m−1�. If both online and offline
algorithms have m servers at their disposal, our algorithm
is again �1+ �2�−1�/
�-competitive. If we do not restrict
our algorithms to run in polynomial time, we can show
the competitive ratio of our algorithm is 1+ 1/
, and this
result is best-possible. Finally, we consider the notion of
advanced information, where a city is revealed to the online
algorithm before its release date. We give a result for the
multiple-server case that generalizes the single-server result
in Jaillet and Wagner (2006): We give an algorithm that is
�2 − �/�1 + ���-competitive, where � is a measure of the
advanced information. This improves the best-possible com-
petitive ratio of 2 when there is no advanced information.
In the final part of our paper, we study the asymptotic

behavior of single-server online routing under general
stochastic structures for the problem data, unknown and
unused by the online algorithm. We first consider capacity
and speed augmentation (with no precedence constraints)
when city locations are stochastic (with arbitrary release
dates and unit demands); we show that our polynomial-
time online algorithm is asymptotically �1+ ��q�/�
Q�+
��− 1�/
�-competitive, almost surely, where Q�q� is the
capacity of the online (offline) server (Q� q). We then con-
sider the case where both online and offline algorithms have
the same resources but where city locations, release dates,
and—at times—demands are stochastic. We give online
algorithms that are almost surely asymptotically optimal for
two frameworks: (1) precedence constraints but no capacity
constraints, and (2) capacity constraints but no precedence
constraints. We are aware of only one other related result:
Hiller (2005) considers the online dial-a-ride problem on
trees under high loads and gives an online algorithm that
is probabilistically �1+ o�1��-competitive. Similar asymp-
totic optimality results can be found in the online machine
scheduling literature; see Chou et al. (2006a, b) and Liu
et al. (2005). Finally, we provide a computational study that
shows that the convergence to optimality can be very fast.

Outline. The remainder of this paper is organized as
follows. In §2, we give preliminaries and study general
online routing problems using the traditional competitive
ratio measure. In §3, we study the effect of resource aug-
mentation for a variety of problems. In §4, we show the
almost sure asymptotic optimality of a number of online
routing algorithms, and we provide computational results
on the rate of convergence. Finally, in §5 we provide con-
cluding remarks.

2. Generalized Online Routing

2.1. Single-Server Routing Problems

We first consider routing problems where a single server
must service a sequence of requests. The data for our

problems are a set of points �li� ri�di�, i= 1� � � � � n, where n
is the number of requests and k�i� is the number of cities in
request i: li = �l1i � l

2
i � � � � � l

k�i�
i � and di = �d1i � d

2
i � � � � � d

k�i�
i �.

The quantity lji ∈ �, � an arbitrary metric space, is the
location of the jth city in the ith request. The quantity
ri ∈�+ is the ith request’s release date; i.e., ri is the first
time after which cities in request i will accept service. We
assume, without loss of generality, that r1 � r2 � · · ·� rn.
The quantity dji ∈�+ is the demand of city l

j
i . The server

has a capacity Q and the sum of city demands visited on
any given tour can be at most Q; we assume that dji �Q
for all i� j . It is possible to generalize our capacity model
to allow positive and negative demands as well as differ-
ent types of products being transferred. However, we study
the current problem to limit the complexity of the analy-
sis. Precedence constraints exist within a request; i.e., for a
fixed i, arbitrary precedence constraints of the form l

j
i  lki

(lji must be visited before l
k
i ) for any j �= k. The service

requirement at a city is zero. Unless stated otherwise, the
server travels at unit speed or is idle. The problem begins
at time 0, and the server is initially at a designated origin o
of the metric space. The objective is to minimize the time
required to visit all cities and have the server return to the
origin. We also let � = �1� � � � � n�.
From the online perspective, the total number of requests,

represented by the parameter n, is not known, and request i
only becomes known at time ri. Z

A�n�Q� denotes the cost
of online algorithm A on an instance of n cities with server
capacityQ, andZ∗�n�Q� is the corresponding optimal offline
cost where all data are known a priori. Zr=0�n�Q� is the opti-
mal cost when all release dates are equal to zero; clearly,
Zr=0�n�Q� � Z∗�n�Q�. The problem instance underlying
Zr=0�n�Q�, ZA�n�Q�, and Z∗�n�Q� will be clear from con-
text. Finally, define LTSP as the optimal TSP tour length
through all cities in an instance; i.e., LTSP = Zr=0�n���; the
value of nwill be clear from context.
We measure the performance of online algorithms using

the competitive ratio and the asymptotic competitive ratio.
The competitive ratio is defined as the worst-case ratio,
over all problem instances, of online to offline costs:
maxinstancesZ

A�n�Q�/Z∗�n�Q�. An online algorithm is also
said to be c-competitive if its competitive ratio is at most c.
An online algorithm is asymptotically c-competitive if there
exists n0 such that for all n� n0, Z

A�n�Q�/Z∗�n�Q�� c.
An online algorithm is said to be best-possible if there does
not exist another online algorithm with a strictly smaller
competitive ratio.
We first present online algorithm Plan-At-Home (PAH),

which was given by Ausiello et al. (2001) and solves the
online TSP optimally, with respect to the competitive ratio
measure. We then generalize PAH and we denote our algo-
rithm Plan-At-Home-Generalized (PAH-G). Note that the
competitive ratio of the original PAH is 2.

Algorithm 1 (PAH)
(1) Whenever the server is at the origin, it calculates

and implements an exact solution to LTSP over all requests
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whose release dates have passed but have not yet been
served completely.
(2) If at time ri, for some i, a new request is pre-

sented, the server takes one of two actions depending on
the server’s current position p and the current request loca-
tion li:

(a) If d�li� o� > d�p�o�, the server goes back to the
origin where it appears in a Case (1) situation.

(b) If d�li� o� � d�p�o�, the server ignores request i
until it completes the route it is currently traversing, where
again Case (1) is encountered.

Algorithm 2 (PAH-G)
(1) Whenever the server is at the origin, it calculates and

implements a �-approximate solution to Zr=0�n�Q� over
all requests whose release dates have passed but have not
yet been served completely.
(2) If at time ri, for some i, a new request is pre-

sented, the server takes one of two actions depending on
the server’s current position p and the farthest location in
the current request l∗i :

l∗i = argmax
�l
j
i �1�j�k�i��

d�o� l
j
i � �

(a) If d�l∗i � o� > d�p�o�, the server goes back to the
origin where it appears in a Case (1) situation.

(b) If d�l∗i � o�� d�p�o�, the server ignores request i
until it completes the route it is currently traversing, where
again Case (1) is encountered.

We give a corollary of Theorem 1, which is proven in §3.

Corollary 1. Algorithm PAH-G is 2�-competitive.

As an example, if we consider the online capacitated
TSP without precedence constraints, we can apply the iter-
ated tour partition (ITP) heuristics given by Altinkemer and
Gavish (1990) and Haimovich and Rinnooy Kan (1985). If
d
j
i = 1 for all i� j , there exists an ITP heuristic with approx-
imation ratio �� �5/2+ 3/2Q�. If demands are arbitrary,
there exists an ITP heuristic with approximation ratio ��
�7/2− 3/Q�.
This result shows interesting properties. First, it is possi-

ble to relate the competitive ratio of PAH-G to the approx-
imation ratio of a simpler but related optimization problem
Zr=0�n�Q�. Also, if we have access to exact algorithms
for Zr=0�n�Q�, adding capacity and precedence constraints
results in no increase in the competitive ratio, with respect
to the online TSP.

2.2. Multiple-Server Routing Problems

We now consider routing problems with m identical
servers. We do not consider capacity or precedence con-
straints. The data for our multiple-server problems are
closely related to that of the single-server problems: The
data are a set of points �li� ri�, i = 1� � � � � n, where li ∈�
(ri ∈ �+) is the location (release date) of the ith request.

We again assume, without loss of generality, that r1 �
r2� · · ·� rn. The service requirement at a city is again zero.
Unless stated otherwise, the servers travel at unit speed or
are idle. The problem begins at time 0, and all servers are
initially at a designated origin o of the metric space. The
objective is to minimize the time required to visit all cities
and have all servers return to the origin.
ZA�n�m� denotes the cost of online algorithm A on an

instance of n cities with m identical servers, and Z∗�n�m�
is the corresponding optimal offline cost where all data
are known a priori. We assume that n � m. Zr=0�n�m�
is the optimal cost when all release dates are equal to
zero; clearly, Zr=0�n�m��Z∗�n�m�. Note that Zr=0�n�m�
is equivalent to the problem of finding a set of m tours,
that collectively visit all locations, such that the maximum
tour length is minimized; see Frederickson et al. (1978).
The problem instance underlying Zr=0�n�m��ZA�n�m�,
and Z∗�n�m� will be clear from context. Finally, note that
LTSP =Zr=0�n�1�; the value of n will be clear from context.
The competitive ratio and (asymptotic) competitiveness are
defined similarly to the single-server case.
We again give an online algorithm that generalizes PAH,

which was given by Ausiello et al. (2001); we denote
our algorithm Plan-At-Home-m-Servers (PAH-m). Let pi
denote the location of server i.

Algorithm 3 (PAH-m)
(1) Whenever all servers are at the origin, they calcu-

late and implement a �-approximate solution to Zr=0�n�m�
over all requests whose release dates have passed but have
not yet been served.
(2) If at time ri, for some i, a new request is pre-

sented, the servers take one of two actions depending on
the request’s location li and the farthest server’s current
position p∗ (ties broken arbitrarily):

p∗ = argmax
�pi �1�i�m�

d�o�pi� �

(2a) If d�li� o� > d�p∗� o�, all servers go back to the
origin where they appear in a Case (1) situation.

(2b) If d�li� o�� d�p∗� o�, all servers except p∗ return
to the origin; server p∗ ignores request i until it completes
the route it is currently traversing, where again Case (1) is
encountered.

We first give a corollary of Theorem 4, and then we give
a corollary of Theorem 5. These theorems are proven in §3.

Corollary 2. Algorithm PAH-m is 2�-competitive.

As an example, we can apply the approximation algo-
rithm for Zr=0�n�m� given by Frederickson et al. (1978)
that has an approximation ratio �� 5/2− 1/m.
Corollary 3. If we use an exact algorithm in Step (1) for
calculating an optimal offline Zr=0�n�m�, the competitive
ratio of PAH-m is 2 and this result is best-possible.

Again, it is possible to relate the competitive ratio to the
approximation ratio of a simpler but related optimization
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problem Zr=0�n�m�. Also, if we have access to exact
offline algorithms for Zr=0�n�m�, adding extra vehicles
to the problem statement results in no change (increase
or decrease) in the competitive ratio, with respect to the
online TSP.

3. Resource Augmentation

3.1. Definition

Resource augmentation gives the online algorithm addi-
tional power by increasing its resources. The motivation
is to preclude pathological examples that could drive the
worst-case competitive ratio; with resource augmentation,
we derive improved, more realistic, and meaningful com-
petitive ratios.
We study four types of resource augmentation: speed,

capacity, server, and advanced notice. Speed augmentation
gives the online servers, a faster speed than the corre-
sponding offline servers. Capacity augmentation gives the
online server a larger capacity. Vehicle augmentation gives
the online algorithm more servers than the offline algo-
rithm. Advanced notice allows each request to be revealed
to the online algorithm ahead of its release date. In §3.2,
we first consider our general single-server routing frame-
work with speed augmentation (in §4.1, with additional
stochastic assumptions, we consider single-server problems
with both speed and capacity augmentation). We then con-
sider in §3.3 multiple-server routing problems with both
speed and vehicle augmentation. In §3.4, we extend the
single-server advanced notice results in Jaillet and Wag-
ner (2006) to the multiple-server case. Finally, in §3.5 we
present lower bounds for competitive ratios under resource
augmentation. These results are used to show that a number
of our competitive ratio results are best-possible.

3.2. Single-Server Resource Augmentation

The online algorithm has a single server with a speed 
 � 1.
The offline algorithm has a single server of unit speed.
Online and offline servers have identical capacities Q.

Theorem 1. Algorithm PAH-G is �1+ �2�− 1�/
�-com-
petitive.

Proof. See the online appendix. An electronic compan-
ion to this paper is available as part of the online version
that can be found at http://or.pubs.informs.org/ecompanion.
html. �

We also have a tight result when we have access to exact
offline algorithms.

Theorem 2. If we use an exact algorithm in Step (1) for
calculating an optimal offline Zr=0�n�Q�, the competitive
ratio of PAH-G is 1+ 1/
, and this result is best-possible.

Proof. We give matching upper and lower bounds on the
competitive ratio. The upper bound of 1+ 1/
 is clear by
setting � = 1 in Theorem 1. The lower bound is clear by
setting a= 0 in Theorem 8. �

3.3. Multiple-Server Resource Augmentation

In this subsection, we give the online algorithm m identical
servers, each with a speed 
 � 1. The offline has a single
server of unit speed.
Next, we make an observation: If all the locations are

closely clustered, there is little benefit to using multiple
vehicles. Therefore, we make an assumption that allows us
to circumvent this fact; we then give a useful lemma that
applies this assumption.

Assumption 1. There exists  > 0 such that for all i� j ∈
�0� � � � � n�, i �= j ,

d�li� lj ��  �

where l0 denotes the origin.

Lemma 1. Zr=0�n�m��Zr=0�n�1�− �m− 1� .
Proof. We consider a feasible solution to Zr=0�n�m�: For
servers 1� � � � �m − 1, we assign them each the �m − 1�
locations closest to the origin. For vehicle m, we assign
it the remaining n − m + 1 locations; clearly Zr=0�n�m�
equals the distance traveled by server m. Because distances
between locations are at least  , server m will require at
most a distance of LTSP− �m− 1� to serve the remaining
locations. �

Next, we need to define a measure of the value of the
lower bound  . Let

�=  

LTSP
!

note that because LTSP � �n+ 1� , we have that � � 1/
�n+ 1�! there exist instances such that this last inequality
is tight, the most obvious being the metric space where
d�li� lj �=  for all i �= j .

Theorem 3. Under Assumption 1, the competitive ratio of
Algorithm PAH-m is at most

1+ �



�1− �m− 1���+ �− 1



�

Proof. See the online appendix. �

Theorem 4. If both online and offline algorithms have
m servers, the competitive ratio of Algorithm PAH-m is
at most

1+ 2�− 1



�

Proof. Repeat the proof of Theorem 3 but replace all
instances of Z∗�n�1� with Z∗�n�m� (all bounds remain
valid) and do not apply Lemma 1. �

Theorem 5. If both online and offline algorithms have
m servers and the online algorithm has access to an exact
algorithm in Step (1) for calculating an optimal offline
Zr=0�n�m�, the competitive ratio of PAH-m is 1+1/
, and
this result is best-possible.
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Proof. We give matching upper and lower bounds on the
competitive ratio. The upper bound of 1+ 1/
 is clear by
setting � = 1 in Theorem 4. The lower bound is clear by
setting a= 0 in Theorem 8. �

A stronger (although dependent on n) parallel develop-
ment is also possible. We first give an improvement to
Lemma 1.

Lemma 2. Zr=0�n�m��Zr=0�n�1�− �n�m− 1�/m� .
Proof. For simplicity, assume that n/m ∈ �. Let l = n ·
�m − 1�/m. Note that l satisfies the following equation:
l/�m− 1�� n− l. Next, we assign l/�m− 1� locations to
each of the first �m− 1� servers and then assign �n− l�
to server m. We do this in the following way: Pick the
l/�m− 1� locations that form the shortest tour and assign
this tour to server 1. Out of the remaining locations, find
the next l/�m−1� locations that form the shortest tour and
assign to server 2. Repeat until vehicle �m − 1�. There-
fore, vehicle m will have the longest tour of all vehicles.
Consequently, Zr=0�n�m��Zr=0�n�1�−l =Zr=0�n�1�−
�n�m− 1�/m� . �

Using this refinement, we have the following result.

Theorem 6. Under Assumption 1, the competitive ratio of
Algorithm PAH-m is at most

1+ �




(
1− n�m− 1�

m
�

)
+ �− 1



�

3.4. Value of Advanced Information

In this section, we investigate the value of advanced infor-
mation, as introduced by Jaillet and Wagner (2006), for
the multiple-server case. In Jaillet and Wagner (2006), dis-
closure dates were introduced: qi is the disclosure date of
request i. We let qi be the time when request i’s data are
revealed to the online algorithm; we require that qi � ri.
We consider a special case where there exists a constant
a > 0 such that qi = �ri − a�+, where �x�+ = max�0� x�.
We define an appropriate algorithm to take advantage of
the disclosure dates, which we denote Plan-At-Home-m-
Servers-disclosure-dates (PAH-m-dd).

Algorithm 4 (PAH-m-dd)
(1) Whenever all servers are at the origin, they calcu-

late and implement an exact solution to Z∗�n�m� over all
requests whose disclosure dates have passed but have not
yet been served completely.
(2) If at time qi, for some i, a new request is pre-

sented, the servers take one of two actions depending on
the request’s location li and the farthest server’s current
position p∗ (ties broken arbitrarily):

p∗ = argmax
�pi �1�i�m�

d�o�pi��

(a) If d�li� o� > d�p∗� o�, all servers go back to the
origin where they appear in a Case (1) situation.

(b) If d�li� o�� d�p∗� o�, all servers except p∗ return
to the origin; server p∗ ignores request i until it completes
the route it is currently traversing, where again Case (1) is
encountered.

Theorem 7. Algorithm PAH-m-dd is �2−�/�1+���-com-
petitive, where �= a/Zr=0�n�m�.

Proof. See the online appendix. �

3.5. Lower Bounds

In this subsection, we give two general lower bounds. The
first considers the case where both online and offline algo-
rithms have access to m servers. The second considers the
case where the online algorithm has m servers and the
offline algorithm has access to a single server.

Theorem 8. When both online and offline algorithms have
access to m servers, any �-competitive algorithm serving
requests on a metric space �, with qi = �ri − a�+, i ∈ �
and speed augmentation, has

��
1+ 1/

1+�

�

where �= a/Zr=0�n�m�.

Proof. See the online appendix. �

Theorem 9. When the online algorithm has access to
m servers and the offline algorithm a single server (i.e.,
vehicle augmentation), any �-competitive algorithm serv-
ing requests on a metric space �, with qi = �ri−a�+, i ∈�
and speed augmentation, has

��
1+ 1/

m+�

�

where �= a/Zr=0�n�m�.

Proof. See the online appendix. �

4. Asymptotic Analyses
In this section, we analyze online algorithms under stochas-
tic structures for the problem data, unknown and unused
by the online player. We use uppercase letters to denote
random variables.
We consider only single-server problems, and we also

require that each request be the same size: ∃k such that
k�i�= k for all i. In §4.1, we first consider the special case
k= 1, and we study capacity augmentation under stochastic
assumptions on the request locations (release dates are arbi-
trary and demands unit); we are able to obtain a competitive
ratio result beyond what we could achieve under the frame-
work of §3. We then study in §4.2 the case where capacities
are infinite but precedence constraints exist. In this section,
we make stochastic assumptions on both the request loca-
tions and the release dates. Subsequently, in §4.3 we return
to the special case k = 1 and study capacitated routing
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problems. We make stochastic assumptions on the request
locations, release dates, and, at times, the request demands.
In both §§4.2 and 4.3, we prove a number of almost sure
asymptotic optimality results. Finally, in §4.4 we present
computational results.
We utilize a generic technique to prove almost sure

asymptotic optimality: We find random variables F �n� and
G�n� that satisfy Z∗�n�Q�� F �n� and ZA�n�Q�� F �n�+
G�n� for all n for some online algorithm A. Then, we
show that limn→�G�n�/F �n�= 0, a.s., which implies that
limn→�ZA�n�Q�/Z∗�n�Q�= 1, a.s.
We now list all the different assumptions that might be

called upon throughout §4.

Spatial Stochastic Assumption

Assumption 2. For each j ∈ �1� � � � � k�, Lj1�Lj2� � � � �Ljn are
independently identically distributed from a distribution of
compact support in d � 2 dimensional Euclidean space.
Additionally, Lik and L

j
l are independent for all i� j� k� l

(except, of course, when i= j and k= l).

Remark 1. Note that the distribution for Lj1�L
j
2� � � � �L

j
n

need not be the same as the distribution for Li1�L
i
2� � � � �L

i
n

for i �= j . The support for the individual distributions do
not even need to overlap.

Temporal Stochastic Assumptions. We introduce two
natural probabilistic structures for the release dates. We first
consider a structure that is motivated by the uniformity of
the requests and a second structure that is motivated by the
common use of the Poisson process in modeling arrivals
over time.

Assumption 3 (Order Statistics). The release date of
each request is a realization of a generic nonnegative ran-
dom variable Y � 0; i.e., the unordered release dates are
independently identically distributed from a given distribu-
tion. Because our model requires an order (Rk � Rl for
k < l), the kth release date is the kth order statistic: Rk =
Y�k�, where Yk � 0, k= 1� � � � � n are i.i.d. random variables
and Y�1� � Y�2� � · · ·� Y�n�. Let (Y and )2Y denote the mean
and variance, respectively, of the random variable Y .

Assumption 4 (Renewal Process). Define nonnegative
i.i.d. random variables Xi � 0 to be the time between the
�i− 1�th and ith release date. We then define the release
dates as follows: Rk =

∑k
i=1Xi! note that Rk+1 =Rk+Xk+1

for all k. Let (X and )2X denote the mean and variance,
respectively, of the random variable X.

Demand Stochastic Assumption. This assumption is
used together with the normalization Q= 1.
Assumption 5. The request demands Dj

i are i.i.d. from a
distribution on ,0�1-.

4.1. Capacity Resource Augmentation for the
Case k = 1 and di = 1 ∀ i

We let the online algorithm have a single server with a
capacity of Q and a speed 
 � 1. The offline algorithm has
a single server of unit speed with capacity q �Q. Q and q
are constants. Assumption 2 holds in this section. Request
release dates are arbitrary and demands unit. We begin with
a lemma.

Lemma 3. Under Assumption 2, if k= 1, 0< Ɛ,d�0�L�- <
� and di = 1 ∀ i, then limn→�Zr=0�n�Q�/Zr=0�n� q� =
q/Q� a.s.

Proof. Because Q and q are constants, we can apply the
results of Haimovich and Rinnooy Kan (1985), which state
that

Zr=0�n�Q�
n

→ 2Ɛ,d�0� l�-
Q

and

Zr=0�n� q�
n

→ 2Ɛ,d�0� l�-
q

� a.s.

Taking the limit of the ratio gives the result. �

Theorem 10. Under Assumption 2, if k = 1, 0 <
Ɛ,d�0�L�- <� and di = 1 ∀ i, then the asymptotic compet-
itive ratio of Algorithm PAH-G is at most 1+ �q/�
Q�+
��− 1�/
� a.s.
Proof. See the online appendix. �

4.2. Precedence Constraints Without Capacity
Constraints

We consider here the general case k � 1. Note that when
k = 1, we study the online TSP; and when k = 2, we
study an online version of the makespan-objective dial-a-
ride problem. We assume that Q=�. The precedence con-
straints are as follows: ∀ i, L1i  L2i  · · ·  Lki . In other
words, L1i must be visited before L

2
i , which in turn must be

visited before L3i and so on. Let L
j
TSP denote the shortest

tour through the points �Lj1� � � � �L
j
n� for each j ∈ �1� � � � � k�.

We begin by defining a greedy strategy which we denote
as greedy-makespan (GM).

Algorithm 5 (GM)
At any release date, calculate a path � of shortest length

that satisfies the following constraints:
(1) � starts at the current server location and ends at the

origin o.
(2) All unserved requests are visited, and the precedence

constraints are respected.
The server then traverses the path � at unit speed, until

the next release date (if any).

Lemma 4.

Z∗�n����max�Rn� max
1�j�k

L
j
TSP� and

ZGM�n����min
{
Rn+

3
2

k∑
j=1
L
j
TSP�2Rn+

k∑
j=1
L
j
TSP

}
�
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Proof. We first discuss the lower bounds on Z∗�n���.
Clearly, Z∗�n����Rn, the release date of the last request.
Next, because for a given j ∈ �1� � � � � k� the locations
L
j
1� � � � �L

j
n must be visited, the server must travel at least

L
j
TSP, the shortest tour through these points. As the server
travels at unit speed, Z∗�n����max1�j�k LjTSP.
We now consider strategy GM. At time Rn, the greedy

server will optimize a path, from its current location
through all remaining unserved points and finally return-
ing to the origin. This greedy path will not take longer
than the following alternate strategy: At time Rn, the server
returns to the origin and then completes m tours in order.
The first tour visits the points L11� � � � �L

1
n and takes L

1
TSP

units of time, because the server travels at unit speed. Then,
the server traverses L2TSP, followed by L

3
TSP and so on, up

to LkTSP. Clearly, this is a feasible strategy. Thus, strategy
GM’s cost may be bounded:

ZGM�n����Rn+ x+
k∑
j=1
L
j
TSP� (1)

where x is the time required for the inital return to origin
at time Rn. Because the server travels at unit speed, clearly,
x�Rn. Finally, the GM strategy will never allow the server
to proceed past the maximum point location; this gives

x� max
1�j�k

{
max
1�i�n

�d�o�L
j
i ��

}
� max

1�j�k

{
1
2L

j
TSP

}
�
1
2

k∑
j=1
L
j
TSP�

which gives the result. �
Note that GM is not a polynomial-time strategy, because

for even k = 1 we must calculate a Hamiltonian path. We
now give a polynomial-time algorithm greedy-makespan-
polynomial (GMP) that gives a result almost as strong as
Lemma 4.

Algorithm 6 (GMP)
At any release date Ri:
(1) Return to the origin.
(2) For each j ∈ �1� � � � � k�, calculate a tour using

Christofides’ heuristic to visit any unserved points in
�L

j
1� � � � �L

j
i �.

(3) Traverse the tours in the order 1�2� � � � � k at unit
speed, until the next release date (if any).

We have a corollary for algorithm GMP, which is easily
seen by replacing Equation (1) in the proof of Lemma 4
with ZGMP�n����Rn+ x+ 3

2

∑k
j=1L

j
TSP.

Corollary 4.

ZGMP�n����min
{
Rn+ 2

k∑
j=1
L
j
TSP�2Rn+

3
2

k∑
j=1
L
j
TSP

}
�

Finally, we consider algorithm PAH for the online TSP
(i.e., k = 1), which was defined by Ausiello et al. (2001)
and generalized to be polynomial-time by Jaillet and
Wagner (2006).

Algorithm 7 (PAH)
(1) Whenever the salesman is at the origin, it starts to

follow a tour that serves all known cities that have not yet
been served. This tour is calculated using a �-approxima-
tion algorithm that solves an offline classic TSP.
(2) If at time Ri, for some i, a new city is presented at

point L, the salesman takes one of two actions depending
on the salesman’s current position p:

(a) If d�L�o� > d�p�o�, the salesman goes back to
the origin where it appears in a Case (1) situation.

(b) If d�L�o� � d�p�o�, the salesman ignores the
city until it arrives at the origin, where again it re-enters
Case (1).

Using an argument similar to that in in the proof of
Lemma 4, we attain the following result.

Lemma 5. ZPAH�n����Rn+ 2�LTSP�
Next, we study each of the release date structures. We

consider only k = 1 under the order statistic structure
because our techniques were not successful for k > 1. For-
tunately, under the renewal process structure we were able
to prove an asymptotic optimality result for any k. Fur-
thermore, we show asymptotic optimality results for both
polynomial-time algorithms GMP and PAH. The follow-
ing theorem is essential to proving many of our asymptotic
optimality results.

Theorem 11 (Beardwood et al. 1959). Under Assump-
tion 2, there exists a cjd > 0 such that

lim
n→�

L
j
TSP

n�d−1�/d
= c

j
d a.s�

where d is the dimension of the underlying Euclidean
space.

4.2.1. Order Statistic Release Dates for k = 1. For
the order statistic release date structure, we consider only
k = 1. We begin by stating the main result of this
subsection.

Theorem 12. Under Assumptions 2 and 3, if k = 1 and
)2Y <�, then limn→��ZGM�n���/Z∗�n����= 1 a.s.

To prove Theorem 12, we begin with a useful lemma
concerning Rn.

Lemma 6. If Ɛ�Y r� < �, r ∈ �, then limn→� Y�n�/n. = 0
a.s., for any .� 1/r .

Proof. Consequence of Theorem 4.4.1 in Galambos
(1987). �

Proof of Theorem 12. We find random variables F �n�
and G�n� such that Z∗�n��� � F �n� and ZGM�n��� �
F �n�+G�n�. We then prove that limn→�G�n�/F �n�= 0.
Now, with k= 1, Lemma 4 lets us define F �n�= LTSP and
G�n�= 2Rn. By Theorem 11, we have that there exists a
cd > 0 such that limn→� F �n�/n�d−1�/d = cd a.s., and con-
sequently, limn→� n�d−1�/d/F �n� = 1/cd a.s. By Lemma 6
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and the fact that )2Y < �, we have that limn→�G�n�/n.

= 0 a.s. for any . � 1
2 ; we let . = �d− 1�/d for any

d � 2. Multiplying the two latter limit results, we attain
limn→�G�n�/F �n�= 0 a.s., which proves the theorem. �

Remark 2. If k > 1 and we had choosen F �n� =∑k
j=1L

j
TSP, it would no longer have been neccesarily true

that Z∗�n���� F �n�, and our proof technique fails. Also,
unfortunately, we were not able to attain a similar result for
GMP or PAH, even for k = 1, as choosing F �n� = 3

2LTSP
does not necessarily satisfy Z∗�n���� F �n�.

4.2.2. Renewal Process Release Dates for Arbitrary k.
We begin by stating and proving the main result of this
subsection.

Theorem 13. Under Assumptions 2 and 4, if 0<(X <�,
then limn→�ZGM�n���/Z∗�n���= 1 a.s.

Proof. To prove this result, we again (c.f. the proof of
Theorem 12) first find appropriate random variables F �n�
and G�n�: Lemma 4 lets us assign F �n�=Rn and G�n�=
3
2

∑k
j=1L

j
TSP.

By Theorem 11, we have that, in dimension d, there exist
positive constants cjd > 0 such that limn→�L

j
TSP/n

�d−1�/d =
c
j
d a.s. Thus,

lim
n→�

G�n�

n�d−1�/d
= cd (2)

a.s., where cd = 3
2

∑k
j=1 c

j
d. By the Strong Law of Large

Numbers, we have that

lim
n→�

F �n�

n
= lim

n→�
1
n

n∑
i=1
Xi =(X a.s.

Because (X > 0, we see that

lim
n→�

n

F �n�
= 1
(X

(3)

a.s. and, multiplying Equations (2) and (3), we see that
limn→� n1/dG�n�/F �n� = cd/(X a.s. Finally, because
limn→� 1/n1/d = 0, we conclude that limn→�G�n�/F �n�
= 0 a.s. �

By substituting G�n�= 2∑k
j=1L

j
TSP in the proof of Theo-

rem 13, we have the following corollary for the polynomial-
time algorithm GMP.

Corollary 5. Under Assumptions 2 and 4, if 0<(X <�,
then limn→�ZGMP�n���/Z∗�n���= 1 a.s.
Finally, by substituting G�n� = 2�LTSP in the proof

of Theorem 13, we have the following corollary for the
polynomial-time algorithm PAH (for the online TSP, where
k= 1).
Corollary 6. Under Assumptions 2 and 4, if 0<(X <�,
then limn→�ZPAH�n���/Z∗�n���= 1 a.s.

4.3. Capacity Constraints for the Case k = 1 in
Two-Dimensional Euclidean Space

We return to the special case where each request is simple:
k = 1. We now consider capacitated online routing prob-
lems. The single server has capacity Q. We next define
an online algorithm for this problem: Greedy-Capacitated-
Routing (GCR).

Algorithm 8 (GCR)
Whenever a new request is released, immediately return

to the origin, calculate an optimal set of tours to visit the
remaining unserved requests, and begin traversing the tours
(in arbitrary order) at unit speed.

Lemma 7.

Z∗�n�Q��max�Rn�Z
r=0�n�Q�� and

ZGCR�n�Q�

�min
{
2Rn+Zr=0�n�Q��Rn+ 1

2LTSP+Zr=0�n�Q�
}
�

Proof. Similar to the proof of Lemma 4. �

Next, we consider both release date structures and give
conditions under each where we can show the almost sure
asymptotic optimality of GCR. We limit our discussion to
requests being located in the two-dimensional Euclidean
plane.

4.3.1. Order Statistic Release Dates for k = 1. We
have two main results for this subsection. The first result is
the following.

Theorem 14. Under Assumptions 2 and 3,
• If di = 1 ∀ i, Q is constant, (Y <�, and Ɛ�d�o�L�� >

0, then limn→�ZGCR�n�Q�/Z∗�n�Q�= 1 a.s.
• If di = 1 ∀ i, limn→��Q/

√
n�=�, and )2Y <�, then

limn→�ZGCR�n�Q�/Z∗�n�Q�= 1 a.s.

This theorem is proved in part by using the following
result by Haimovich and Rinnooy Kan (1985).

Theorem 15 (Haimovich and Rinnooy Kan 1985).
Under Assumption 2,
• If di = 1 ∀ i and Q is constant, then

lim
n→�

Zr=0�n�Q�
n

= 2Ɛ�d�o�L��
Q

a.s�

• If di = 1 ∀ i and limn→�Q/
√
n=�, then there exists

a constant �> 0, where limn→�Zr=0�n�Q�/
√
n= � a.s.

Proof of Theorem 14. We prove the first part of the the-
orem first. We take F �n� = Zr=0�n�Q�, G�n� = 2Rn and
show that limn→�G�n�/F �n�= 0 a.s. We first decompose
the argument of the limit:

G�n�

F �n�
= 2

(
n

Zr=0�n�Q�

)(
Y�n�

n

)
�

Using the first part of Theorem 15, we conclude that
n/Zr=0�n�Q� → Q/2Ɛ�d�o�L�� a.s. Because (Y < �,
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Lemma 6 shows that Y�n�/n→ 0 a.s. We now prove the sec-
ond part of the theorem and use the same random variables
for F �n� and G�n�. Again, we decompose the argument of
the limit:

G�n�

F �n�
= 2

( √
n

Zr=0�n�Q�

)(
Y�n�√
n

)
�

Using the second part of Theorem 15, we conclude that√
n/Zr=0�n�Q�→ �1/�� a.s. Because )2Y <�, Lemma 6

shows that Y�n�/
√
n→ 0 a.s. �

Next, we consider a more general version of the online
capacitated routing problem. We begin by normalizing all
capacities and demands so that Q = 1 and di � 1 ∀ i. We
now allow the demands di to be random variables, i.i.d.
from a distribution on ,0�1-. Under these conditions, the
following result was proved by Bramel et al. (1992), and
it proves useful in showing another asymptotic optimality
result.

Theorem 16 (Bramel et al. 1992). Under Assump-
tions 2 and 5, there exists a constant � > 0 such that
limn→�Zr=0�n�Q�/n= 2�Ɛ�d�o�L�� a.s.
The second result of this subsection is the following.

Theorem 17. Under Assumptions 2, 3, and 5, if (Y <�
and Ɛ�d�o�L�� > 0, then limn→�ZGCR�n�Q�/Z∗�n�Q� =
1 a.s.

Proof. We take F �n� = Zr=0�n�Q�, G�n� = 2Rn

and prove that limn→�G�n�/F �n� = 0 a.s. We re-
write G�n�/F �n� = 2�n/Zr=0�n�Q���Y�n�/n�. Using The-
orem 16, we conclude that n/Zr=0�n�Q� → �2�Ɛ ·
�d�o�L���−1 a.s. Because (Y <�, Lemma 6 tells us that
Y�n�/n→ 0 a.s. �

4.3.2. Renewal Process Release Dates for k= 1. Our
main result for this subsection is the following.

Theorem 18. Under Assumptions 2 and 4, if di = 1 ∀i,
limn→�Q/

√
n=�, and 0<(X <�, then

lim
n→�Z

GCR�n�Q�/Z∗�n�Q�= 1 a.s.

Proof. We take F �n� = Rn, G�n� = 1
2LTSP + Zr=0�n�Q�

and prove that limn→�G�n�/F �n�= 0 a.s. We first decom-
pose the argument of the limit:

G�n�

F �n�
=
(

n∑n
i=1Xi

)(
1
2
LTSP√
n

+ Zr=0�n�Q�√
n

)(
1√
n

)
�

By the Strong Law of Large Numbers, we have that∑n
i=1Xi/n→ (X a.s. and because (X > 0, n/

∑n
i=1Xi →

1/(X a.s. By Theorem 11, we have that there exists c > 0
such that LTSP/

√
n→ c a.s. By Theorem 15, we have that

Zr=0�n�Q�/
√
n→ � a.s. Finally, because �c+ 2��/2(X is

a finite constant and 1/
√
n→ 0, the theorem is proved. �

4.4. Online TSP Simulations

In this section, we present simulation results for the online
TSP. In this way, we are able to see very precisely the
speed of convergence to optimality. Under certain stochas-
tic inputs, the convergence is extremely fast.
Our simulations for the online TSP use algorithm PAH.

This algorithm is appealing because its main subroutine
calls for solving a classic TSP. For this subroutine, we
utilize the powerful Concorde TSP solver by Applegate
et al. (2007). Consequently, these results are of a practical
interest.

4.4.1. Fast Asymptotic Optimality. We consider the
following probabilistic situations. City locations are uni-
formly distributed on the unit square ,0�1-2. We consider
a specific generator for each of the release date structures.
We first simulate the case where city release dates are
uniformly distributed on ,0�1-, and then we simulate the
case where the release dates are generated from a Poisson
process of parameter 1. For each value of n, we simu-
late 20 trials and then plot the average ratio of the cost
of algorithm PAH to a lower bound on the optimal offline
cost: �n � ZPAH�n���/max�Rn�LTSP�; therefore, the plots
are conservative. We utilize a lower bound for the offline
cost because it is much simpler and efficient than calcu-
lating large instances of the TSP with release dates. We
also superimpose polynomial functions on the simulation
results. These ratios are presented in the left and right plots
of Figure 1, respectively.
We now briefly discuss the precision of our simulation

results. Clearly, �n � 1. It can be shown that �n � 3. Not-
ing that �n is a random variable, it can be seen that the
standard deviation of �n is maximized, equaling one, when
� ∈ �1�3�, each with probability 1

2 . Our simulation stud-
ies estimate the expected value of �n, so the standard error
of our estimate, using 20 trials, can be bounded: )�n �
)�n/

√
20� 1/

√
20< 0�23. Finally, note that these bounds

are conservative.

5. Conclusion
The focus of this paper has been on generalizations of
the online TSP to allow for precedence constraints, capac-
ity constraints, and multiple vehicles. We derived compet-
itive ratio results for these online problems, several being
best-possible. We then considered resource augmentation,
where we give the online servers additional resources to
offset the powerful offline adversary: faster servers, larger
capacities, more servers, and advanced information. We
derived improved competitive ratios, several being best-
possible. We finally introduced general stochastic structures
for the problem data, unknown and unused by the online
servers, and showed that our online algorithms are almost
surely asymptotically optimal, and we provided computa-
tional (Monte Carlo simulations) results showing that these
convergences are fast.
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Figure 1. Upper bounds on the ratios of the cost of PAH to the optimal offline cost, as a function of n.
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Notes. Each data point is the average of 20 trials. The left plot considers release dates that are uniformly distributed on ,0�1-. The right plot considers
release dates that are generated from a Poisson process of unit parameter.

We conclude by mentioning two areas of future research.
The introduction of accept/reject decisions adds a rich
dimension to the problems considered in this paper—the
online algorithm has the ability to accept or reject a given
request. This introduces additional difficulties; under this
framework is it easy to create problem instances with
unbounded competitive ratios. Therefore, new measures
of online routing algorithms under accept/reject decisions
must be designed and utilized. Another area of research is
to investigate more fully the value of varying degrees of
information about the problem data. For example, if there
was a service time at each location, how much would it be
worth to know the exact service time, a distribution for the
service time, etc? A rich variety of problems are available
for investigation.

6. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.pubs.
informs.org/ecompanion.html.
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