
Almost Sure Asymptotic Optimality for Online Routing
and Machine Scheduling Problems

Patrick Jaillet
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139

Michael R. Wagner
Department of Management, California State University East Bay, Hayward, California 94542

In this article, we study algorithms for online rout-
ing and machine scheduling problems. The prob-
lems are “online” because the problem instances
are revealed incrementally. We first study algorithms
for the online Traveling Repairman Problem (TRP),
where a single server is to visit a set of locations
in a network with the objective of minimizing the
sum of weighted completion times. We then ana-
lyze well-known online algorithms for a variety of
machine scheduling problems, which are appropriate
models for many network optimization problems; in
the scheduling notation of Graham et al. [18], we con-
sider 1|rj , pmtn|∑j wj Cj , 1|rj |∑j wj Cj , Q|rj , pmtn|∑j Cj ,
P |rj |∑j Cj , Q|rj , pmtn|∑j wj Cj and Q|rj |∑j wj Cj . We intro-
duce general probabilistic assumptions about the prob-
lem data as a tool to study the online algorithms for these
online combinatorial problems. The algorithms do not
utilize the underlying probabilistic assumptions in any
way. We prove that these online algorithms are almost
surely asymptotically optimal. © 2009 Wiley Periodicals, Inc.
NETWORKS, Vol. 55(1), 2–12 2010

Keywords: online algorithms; routing; traveling repairman
problem; machine scheduling

1. INTRODUCTION

In this article, we consider a number of online combina-
torial optimization problems. In particular, we consider an
online routing problem and several online machine schedul-
ing problems. These problems are all appropriate models for
various network optimization problems; we provide exam-
ples shortly. The problems are online because the problem
instance is revealed incrementally but decisions can (and
sometimes must) be made before the entire problem instance
is revealed. We investigate these problems in a novel manner:

Received November 2006; accepted August 2007
Correspondence to: P. Jaillet; e-mail: jaillet@mit.edu
DOI 10.1002/net.20309
Published online 6 March 2009 in Wiley InterScience (www.interscience.
wiley.com).
© 2009 Wiley Periodicals, Inc.

we introduce general probabilistic assumptions for the prob-
lem data and we analyze classic online algorithms that do not
utilize the stochastic knowledge. We prove that these well-
known online algorithms are asymptotically optimal, almost
surely.

The first problem that we study is the Traveling Repair-
man Problem (TRP), which is well known in both Operations
Research and Computer Science. In one of its simplest forms
we are given a network N = (V , E), where vertices rep-
resent cities and edge lengths represent distances between
cities. Each city has an associated non-negative weight, rep-
resenting, for example, the importance of the city. A city’s
completion time is defined as the first time that a city is vis-
ited. Given an origin city, the task is to find a path through
the network that traverses each city at least once. Assuming
that the repairman has a constant speed, the objective is to
minimize the weighted sum of city completion times; this
objective is also referred to as the latency. The latency is
closely related to the (weighted) average completion date of
all cities. We may also incorporate release dates, where a city
must be visited on or after its release date; in this case the
problem is known as the “TRP with release dates.” Addition-
ally, we may incorporate precedence constraints, where some
cities must be visited before others. Precedence constraints
are appropriate, for example, if packages/people have to be
picked up at one location and delivered to another location.

In our article, we study online versions of the TRP with
precedence constraints, where the instance is not revealed
all at once. In the framework considered in this article, the
cities are revealed dynamically over time, independent of the
repairman’s location, at their release date. The corresponding
offline problem, where all data is known a priori, is the TRP
with release dates and precedence constraints as introduced
above.

Apart from the straightforward applications in routing
with the latency objective, the TRP has many other appli-
cations. Simchi-Levi and Berman [31] consider the TRP in
flexible manufacturing systems. Some machine scheduling

NETWORKS—2010—DOI 10.1002/net

problems can be cast as a TRP; see Rinnooy Kan [23] and
Picard and Queyranne [26]. Tsitsiklis [34] describes other
applications as well. Finally, the TRP is appropriate in search-
ing problems: if one were to search for a prize located at any
of n given points in a network (where distances satisfy the
triangle inequality) with equal probability, the optimal TRP
solution gives the minimum expected time to find the prize
(see Blum et al. [6].)

We also study online algorithms for a number of machine
scheduling problems whose offline versions are NP-hard.
Machine scheduling problems are an appropriate model
for solving a number of network optimization problems.
Generically, any routing optimization problem on a net-
work can be cast as a machine scheduling problem with
sequence-dependent processing times. For example, consider
the classic Traveling Salesman Problem (TSP) and the sin-
gle machine makespan scheduling problem under sequence
dependent processing times 1|sjk|Cmax. These two optimiza-
tion problems are equivalent; to see this, let job j represent
city j. If city j is the k-th city visited, then the process-
ing time of job j is the time required for the salesman to
travel the distance between the (k − 1)-th city visited and
city j. Furthermore, scheduling in computer networks can be
solved using machine scheduling models. For example, single
machine scheduling concepts have been applied to browsing
the Internet by Xia and Tse [35]. Bampis and Rouskas [4]
apply machine scheduling concepts to problems arising in
optical networks and IP routers.

We study the problem of scheduling jobs that arrive in
an online fashion in single and multiple machine environ-
ments. In the multiple machine environment, we consider
the case where the machines are all identical as well as the
case where the machines have different processing speeds.
A job’s completion time is defined as the first time that
the job has been completely processed. The objective is
to minimize the weighted sum of job completion times
(similarly to the online TRP objective). We consider both
preemptive and nonpreemptive problems. In the scheduling
notation of Graham et al. [18], we study online versions
of 1|rj, pmtn| ∑j wjCj, 1|rj| ∑j wjCj, Q|rj, pmtn| ∑j Cj,
P|rj| ∑j Cj, Q|rj, pmtn| ∑j wjCj and Q|rj| ∑j wjCj.

The focus of this article is on studying algorithms for these
online routing and machine scheduling problems. Online
algorithms are usually evaluated using the competitive ratio,
which is defined as the worst case ratio, over all problem
instances, of the online algorithm’s cost to the cost of an
optimal offline algorithm. We, however, evaluate these online
algorithms using the asymptotic competitive ratio criteria,
which is defined as the worst case ratio of the online algo-
rithm’s cost to the cost of an optimal offline algorithm, for
large enough problem instance sizes.

We show that under certain conditions, the asymptotic
competitive ratio of classic online algorithms is equal to one;
i.e., the online algorithms are asymptotically optimal. In par-
ticular, we introduce general probabilistic assumptions on
the problem data as a tool to study the online algorithms. The
deterministic online algorithms that we study do not use the

probabilistic information in any way. Furthermore, no spe-
cific distributional assumptions are made; we only assume
that the problem data is generated by a distribution that
belongs to a class of distributions that we define. Under these
stochastic assumptions, we show that the classic algorithms
we consider are almost surely asymptotically optimal. One of
the motivations for this research is to provide an explanation
of the excellent performance that some of these algorithms
exhibit computationally as well as in practice.

1.1. Previous Work

Considering the online TRP, Feuerstein and Stougie [15]
give a lower bound of (1 + √

2) for the competitive ratio
and a 9-competitive algorithm, both for the online TRP on
the real line. Krumke et al. [24] improved upon this result
to give a (1 + √

2)2-competitive deterministic algorithm for
the online TRP in general metric spaces as well as a �-
competitive randomized algorithm, where � ≈ 3.64; this
result was corrected to � ≈ 3.86 in Jaillet and Wagner [20]
(see also [25]). The online TRP under advanced information,
where cities are revealed to the online algorithm before their
release dates, was also considered in [20]. A similar approach
was taken by Allulli et al. [2] in the form of a lookahead. Boni-
faci and Stougie [8] consider the online TRP with k servers
and give an algorithm that is 6-competitive and mention that
their approach can be modified to prove their algorithm is
(1 + √

2)2-competitive, matching the single server result.
They also consider the effect on the competitive ratio of
giving the online algorithm additional servers: If the online
algorithm has k servers and the offline algorithm has k∗ ≤ k
servers, their algorithm is 2 · 31/�k/k∗�-competitive.

To the best of our knowledge, there is very little previous
research on the asymptotic competitive ratio for the online
TRP. The one exception is also contained in the work by
Bonifaci and Stougie [8]: If all cities are located on the real
line, they give a deterministic algorithm with a competitive
ratio of 1 + O((log k)/k); i.e., as k → ∞, their algorithm is
asymptotically optimal.

However, there have been similar approaches for related
online routing problems such as the online TSP. Hiller [19]
performs a probabilistic asymptotic competitive analysis of
an online Dial-a-Ride problem on trees. Recently, Jaillet and
Wagner [21] have investigated generalizations of the online
TSP from an asymptotic point of view and have shown a
number of almost sure asymptotic optimality results.

We next consider the literature on online machine schedul-
ing problems. As the literature in this area is vast and we do
not intend to give a comprehensive review, we only mention
the references that are most relevant to our paper. Ander-
son and Potts [3] give a deterministic online algorithm for
1|rj| ∑j wjCj and show that it has a competitive ratio of 2.
Goemans et al. [17] give a randomized algorithm for the same
problem with a competitive ratio of at most 1.68. Sitters [32]
gives a deterministic algorithm for 1|rj, pmtn| ∑j wjCj with
a competitive ratio of at most 1.56. Schulz and Skutella [29]
give a randomized online algorithm for the same problem

NETWORKS—2010—DOI 10.1002/net 3

with a competitive ratio of at most 4
3 . Chekuri, Motwani,

Natarajan and Stein [10] give a deterministic online algorithm
for P|rj| ∑j Cj that has a competitive ratio of at most 3 − 1

m ,
where m is the number of machines. We are not aware of any
further competitive ratio results for the problems P|rj| ∑j Cj

and P|rj, pmtn| ∑j Cj; therefore, we now give state of the
art results for the weighted sum of completion dates objec-
tive. Correa and Wagner [13] give a deterministic algorithm
for P|rj| ∑j wjCj with a competitive ratio of at most 2.62.
Schulz and Skutella [30] give randomized online algorithms
for P|rj| ∑j wjCj and P|rj, pmtn| ∑j wjCj that have compet-
itive ratios of at most 2. Correa and Wagner [13] improve on
these last results, but the improvement depends on the num-
ber of machines. To the best of our knowledge, there are no
existing worst-case results for Q|rj| ∑j wjCj or its preemptive
version.

Most relevant to our online machine scheduling work
is the paper by Chen and Shen [11]. These authors study
online single machine, uniform parallel machine and flow
shop scheduling problems under stochastic assumptions on
the problem data, similar to ours, and they show that a class
of online algorithms are almost surely asymptotically opti-
mal. However, the authors make the additional assumption
that there exist explicit positive lower and upper bounds
on the job weights and processing requirements; we do not
make this assumption. Similarly, Chou et al. [12] consider
the online version of Q|rj| ∑j wjCj and show that, if there
exist positive lower and upper bounds on the processing
requirements and weights, the algorithm Weighted Shortest
Processing Requirement (WSPR) is deterministically asymp-
totically optimal. Additionally, Kaminsky and Simchi-Levi
[22] show that the Shortest Processing Time Among Available
(SPTA) heuristic is deterministically asymptotically optimal
for the online version of 1|rj| ∑j Cj, under the assump-
tion that the processing requirements are all contained in a
bounded interval.

The article by Savelsbergh et al. [28] gives a compre-
hensive computational study of the offline 1|rj| ∑j wjCj

they show that many algorithms perform much better than
is theoretically predicted. In the journal version of Correa
and Wagner [13], a computational study of online algo-
rithms for P|rj| ∑j wjCj and P|rj, pmtn| ∑j wjCj is given
and it is again shown that the algorithms perform better
than expected. Additionally, Albers and Schröder [1] per-
form a computational study of online algorithms for parallel
machine scheduling problems with the objective of mini-
mizing the makespan. They experimentally show that online
algorithms that perform well on randomly generated data do
not necessarily perform well on real-world data.

1.2. Our Contributions

We give the first asymptotic optimality results for the
online TRP with precedence constraints. These results con-
tinue the work in [21] to arguably more complicated online
routing problems (routing optimization problems with the
latency objective are usually considered more difficult that

those with the makespan objective). Furthermore, our asymp-
totic approach is arguably more realistic than the only other
asymptotic analysis for the online TRP (see [8]): We consider
the limit as the number of cities (rather than the number of
servers) goes to infinity. In our opinion, it is more realistic
to consider a problem with a very large number of locations
to visit than one with a very large fleet of vehicles. These
results also have a strong practical implication: If the number
of locations to visit is large enough, then the additional cost
of having dynamic uncertainty (the problem being online),
compared to having all information a priori, is negligible.

We also give the first asymptotic optimality results
for the problems 1|rj, pmtn| ∑j wjCj, 1|rj| ∑j wjCj,
Q|rj, pmtn| ∑j Cj, P|rj| ∑j Cj, Q|rj, pmtn| ∑j wjCj and
Q|rj| ∑j wjCj, that do not require explicit bounds on the
job weights and processing requirements. For the first three
problems, we analyze well-known online algorithms that run
in polynomial time. For the final two problems, we study
online algorithms that do not run in polynomial time. Our
results complement the research in [11], [12], and [22]. Taken
together, these results provide a convincing explanation for
the good practical and computational performance exhibited
by the online algorithms.

A main benefit of our machine scheduling research is to
relax the explicit lower and upper bounds required by the
deterministic analyses in [12] and [22]. By introducing prob-
abilistic assumptions, we are able to relax the explicit bounds
on the data into bounds on the distributional moments of the
data. Note, however, that our approach was only successful
for slightly simpler problems than those considered in [12].
Additionally, our proofs, while in a probabilistic domain, are
arguably simpler. Finally, our results are similar to the almost
sure asymptotic optimality results in [11], but again we do
not require the explicit bounds on the problem data.

Article Outline: In Section 2, we detail the problem
descriptions, introduce probabilistic assumptions and give
useful technical results. In Section 3, we present our results
for the online TRP. In Section 4, we consider single machine
scheduling problems, and in Section 5, we study the multiple
machine cases.

2. PRELIMINARIES

2.1. Problem Data for the Online Traveling
Repairman Problem

The data for our problem is given by (1i, ri, wi), i =
1, . . . , n, where n is the number of requests. Each request
i consists of m locations to visit: 1i = (l1

i , l2
i , . . . , lm

i),

where lj
i ∈ M, M an Euclidean metric space of dimen-

sion d. The quantity ri ∈ R+ is the ith request’s release
date; i.e., ri is the time after which cities in request i will
accept service. We assume, without loss of generality, that
r1 ≤ r2 ≤ · · · ≤ rn. The quantity wi ∈ R+ is the ith request’s
weight. Strict precedence constraints exist within a request:
∀i, l1

i � l2
i � · · · � lm

i . In other words, l1
i must be vis-

ited before l2
i , which in turn must be visited before l3

i and

4 NETWORKS—2010—DOI 10.1002/net

so on. Let Lj
TSP denote the shortest tour through the points

{lj
1, . . . , lj

n} for each j ∈ {1, . . . , m}. The service requirement
at a city is zero. Unless stated otherwise, the repairman trav-
els at unit speed or is idle. The problem begins at time 0,
and the repairman is initially at a designated origin o of the
metric space. The objective is to minimize the weighted sum
of request completion times

∑n
i=1 wiCi, where a request’s

completion time is the first time that all cities in the request
have been visited. Finally, LTRP is the optimal cost when all
release dates are equal to zero.

2.2. Problem Data for Online Machine
Scheduling Problems

The data for our problems is given by (pi, ri, wi), i =
1, . . . , n, where n is the number of jobs. pi ∈ R+ is the pro-
cessing requirement of job i, ri ∈ R+ is the release date of
job i and wi ∈ R+ is the weight associated with job i; the
problems are online because job i’s existence and data do not
become known until time ri. We consider scheduling jobs on
(1) a single machine, (2) parallel identical machines and (3)
parallel uniform machines (i.e., machines have different job
processing speeds). In the multiple machine environment, we
have m ∈ Z machines available, where m is fixed. The objec-
tive is to schedule the jobs on the machine(s) to minimize
the weighted sum of completion dates

∑
j wjCj. We consider

both preemptive and nonpreemptive problems; when preemp-
tion is allowed, a job can be interrupted and resumed later,
possibly on a different machine. We study online versions
of 1|rj, pmtn| ∑j wjCj, 1|rj| ∑j wjCj, Q|rj, pmtn| ∑j Cj,
P|rj| ∑j Cj, Q|rj, pmtn| ∑j wjCj and Q|rj| ∑j wjCj. Let s1 ≥
s2 ≥ · · · sm > 0 be the speeds of the machines in the Q case;
in the P case, sj = 1, ∀j. Job i on machine j will take pi/sj

time to complete.

2.3. Online Optimization and Competitive Analysis

From the online perspective, the total number of
requests/jobs, represented by the parameter n, is not known,
and request/job i only becomes known at time ri. Let ZA

n
denote the cost of online algorithm A on an instance of n
cities and Z∗

n is the corresponding optimal offline cost where
all data is known a priori. The problem instance underlying
ZA

n and Z∗
n will be clear from context.

The performance of online algorithms is usually measured
using the competitive ratio and the asymptotic competitive
ratio criteria. The competitive ratio is defined as the worst-
case ratio, over all problem instances, of online to offline
costs: maxinstances ZA

n /Z∗
n . An online algorithm is also said to

be c-competitive if its competitive ratio is at most c. An online
algorithm is asymptotically c-competitive if there exists n0

such that for all n ≥ n0, ZA
n /Z∗

n ≤ c. An online algorithm is
said to be best-possible if there does not exist another online
algorithm with a strictly smaller competitive ratio.

2.4. Stochastic Assumptions for the Online Traveling
Repairman Problem

We now list two different stochastic assumptions for the
online TRP that are called upon throughout this paper. We
use uppercase letters to denote random variables.

Assumption 1 (Locations). For each j ∈ {1, . . . , m},
Lj

1, Lj
2, . . . , Lj

n are independently identically distributed from
a distribution of compact support in d ≥ 2 dimensional
Euclidean space. Additionally, Li

k and Lj
k are independent

for all i, j, k, l (except, of course, when i = j and k = l).

Note that the distribution for Lj
1, Lj

2, . . . , Lj
n needs not be

the same as the distribution for Li
1, Li

2, . . . , Li
n for i = j. The

support for the individual distributions do not even need to
overlap.

Assumption 2 (Release Dates). The release date of each
request is a realization of a generic non-negative random
variable Y ≥ 0; i.e., the unordered release dates are inde-
pendently identically distributed from a given distribution.
As our model requires an order (Rk ≤ Rl for k < l), the
k-th release date is the k-th order statistic: Rk = Y(k);
where Yk ≥ 0, k = 1, . . . , n are i.i.d. random variables and
Y(1) ≤ Y(2) ≤ . . . , ≤ Y(n).

We also consider a renewal process structure for the
release dates in Section 3.3; since Section 3.3 is the only place
in our paper where we apply this alternate structure, we define
the assumption in that section. We also utilize a deterministic
assumption on the city weights, which we detail next.

Assumption 3 (Weights). There exist values 0 < ω ≤ �

such that ω ≤ wi ≤ �, ∀i.

The lower bound of ω in Assumption 3 simply eliminates
requests with zero weight, requests which would not have
been counted in the objective function cost anyway. The upper
bound of � is intended to eliminate the pathological case
where a single request has an arbitrary large weight which
dominates the objective function cost.

2.5. Stochastic Assumptions for the Online
Machine Scheduling Problems

We now list the different stochastic assumptions for the
online machine scheduling problems.

Assumption 4 (Release Dates). The job release dates
satisfy Assumption 2.

Assumption 5 (Processing Requirement). The processing
requirement Pi of each job is a realization of a generic
non-negative random variable P ≥ 0; i.e., the processing
requirements are independently identically distributed from
a given distribution.

NETWORKS—2010—DOI 10.1002/net 5

Assumption 6 (Weights). The weight Wi of each job is a
realization of a generic non-negative random variable W ≥
0; i.e., the weights are independently identically distributed
from a given distribution.

2.6. Discussion of Stochastic Assumptions

The appeal of our stochastic assumptions is that they do not
specify any particular distribution for the data. The assump-
tions only introduce a probabilistic structure for the data.
Furthermore, these structures match many of the assumptions
made in computational studies that appear in the literature
(e.g., see [1], [13], [28]); therefore, our theoretical analy-
sis complements the computational studies. However, our
assumptions have limitations. Our model requires that related
data (such as job processing requirements) are identically
independently distributed.

The assumption of independence precludes the applica-
tion of our analysis to any practical setting where there are
strong correlations between requests. For example, suppose
the online TRP model is applied to an ice-cream truck that
travels in neighborhoods to sell ice cream to children, who
are the requests (m = 1). Children see that other children are
buying ice cream from the truck and many will also want
ice cream. Therefore, the requests in this case are highly
correlated and our model is not appropriate.

The assumption that certain data are identically distributed
is less of a concern. Even if the characteristics of individ-
ual requests are generated from different distributions, our
analysis can be extended by utilizing generalized versions of
our analysis tools (e.g., Kolmogorov’s Strong Law of Large
Numbers). However, this assumption allows us to bypass the
additional technical details and the main ideas of our proofs
are more easily accessible to the reader.

2.7. Technical Details

In this subsection, we present useful technical results.

Theorem 1 (Beardwood, Halton, Hammersley [5]). Under
Assumption 1, there exists a cj

d > 0 such that

limn→∞ Lj
TSP

n(d−1)/d = cj
d almost surely, where d is the dimension

of the underlying Euclidean space.

Lemma 1 (Bompadre, Dror, Orlin [7]). The cost LTRP of
the minimum latency problem with unit weights when n cities
are uniformly distributed in [0, 1]2 is �(n3/2) almost surely.

Lemma 2. Let {Xi} be a sequence of non-negative i.i.d.
random variables. If E[Xr] < ∞, then

lim
n→∞

max1≤i≤n Xi

nδ
= 0,

almost surely, for all δ ≥ 1
r .

Proof. Consequence of Theorem 4.4.1 in Galambos
[16]. ■

Lemma 3. Let {Xi} be a sequence of i.i.d. random variables.
If E[X2] < ∞, then

lim
n→∞

∑n
j=1 jXj

n2
= E[X]

2
,

almost surely.

Proof. The martingale Mn defined by Mn =∑n
j=1

Xj−E[Xj]
j is bounded in L2, so is convergent almost

surely. Using Kronecker’s lemma we then conclude that

lim
n→∞

∑n
j=1 j(Xj − E[Xj])

n2
= 0,

almost surely. ■

3. THE ONLINE TRP WITH PRECEDENCE
CONSTRAINTS

We consider here the general case m ≥ 1. Note that when
m = 1 we have the classic online Traveling Repairman Prob-
lem and when m = 2, we have an online version of the
latency-objective Dial-a-Ride problem.

We use a generic technique to prove almost sure asymp-
totic optimality: We find random variables Fn and Gn that
satisfy Z∗

n ≥ Fn and ZA
n ≤ Fn + Gn for all n for some online

algorithm A. Then, we show that limn→∞ Gn/Fn = 0, almost
surely, which implies that limn→∞ ZA

n /Z∗
n = 1, almost surely.

This section is organized as follows: In Section 3.1, we
give online algorithms and derive upper bounds on their
costs as well as lower bounds on the optimal offline costs.
In Section 3.2, we prove almost sure asymptotic optimality
results for the case where the release dates satisfy Assump-
tion 2. Finally, we prove similar results in Section 3.3 when
the release dates are instead generated by a general renewal
process.

3.1. Algorithms and Bounds

We define the strategy Greedy-Latency (GL) for these
problems, followed by two polynomial-time strategies.

Algorithm 1 (GL). At any release date, calculate a path P
of minimum latency that satisfies the following constraints:

1. P starts at the current server location.
2. All unserved requests are visited and the precedence

constraints are respected.
3. If there are no unserved requests, remain idle at the

current location (not necessarily the origin).

The server then traverses the path P at unit speed, until the
next release date (if any).

We next define the polynomial-time strategy Greedy-
Latency-Polynomial (GLP) for the special case where m = 1
and wi = 1, ∀i.

6 NETWORKS—2010—DOI 10.1002/net

Algorithm 2 (GLP). At any release date, use a ρ-
approximation algorithm for minimizing latency to find a
path P beginning at the current server location and visit-
ing all unserved requests. Then the server traverses P at unit
speed, until the next release date (if any). If there are no
unserved locations, remain idle at the current location (not
necessarily the origin).

To the best of our knowledge, there are no approximation
algorithms for the arbitrary weight case. Also to the best of
our knowledge, the approximation algorithm (for the unit
weight case) with the smallest approximation ratio ρ to date
is the one given by Chaudhuri et al. [9], which has ρ < 3.6.

Finally, we give a simple polynomial-time algorithm for
the general case: Serve-In-Order-Received (SIOR).

Algorithm 3 (SIOR). Serve in the order received; i.e., visit
the locations in the order:

Ll
1, . . . , Lm

1 , L1
2, . . . , Lm

2 , . . . , L1
n , . . . , Lm

n .

When there are no known unserved locations, remain idle at
the current location.

We now derive useful bounds for the costs of these algo-
rithms, as well as for the optimal offline cost, in a series
of lemmas and corollaries. We consider separately the cases
m = 1 and an arbitrary value of m. We first consider the case
where m = 1.

Lemma 4. If m = 1, Z∗
m ≥ LTRP and ZGL

n ≤ 2Rn
∑n

i=1 wi+
LTRP.

Proof. The lower bound on Z∗
n is clear. Now we con-

sider the server (repairman) at time Rn. Consider an alternate
strategy where the server returns to the origin and then serves
all cities optimally; this strategy clearly has a larger latency
than GL since GL does not necessarily return to the origin at
time Rn and may have already served some cities. The initial
return to the origin of this alternate strategy takes at most
Rn time since the server moves at unit speed. The (alternate)
server then proceeds on the optimal path that minimizes the
latency through all n cities. The completion time of request i
in the alternate strategy is 2Rn + C∗

i , which implies that the
cost of GL is at most 2Rn

∑n
i=1 wi + LTRP. ■

The following corollary is immediate.

Corollary 1. If m = 1 and wi = 1, ∀i, ZGLP
n ≤ 2nRn +

ρLTRP.

We now consider the situation where m is arbitrary.

Lemma 5.

Z∗
n ≥

n∑
j=1

wjRj and ZGL
n ≤

n∑
j=1

wj

(
Rj + 3

m∑
i=1

Li
TSP

)
.

Proof. We begin with the lower bound on Z∗
n . Clearly,

the optimal completion time of each request is at least its
release date; thus we have Z∗

n ≥ ∑n
j=1 wjRj.

We now show the upper bound on ZGL
n by induction on the

number of requests n. For n = 1 (subscripts are supressed),
with L0 = o, it is clear that

ZGL = w

(
R +

m∑
i=1

d(Li−1, Li)

)

≤ w

(
R +

m∑
i=1

(d(Li−1, o) + d(o, Li))

)

≤ w

(
R +

m∑
i=1

2d(o, Li)

)

= w

(
R +

m∑
i=1

Li
TSP

)
.

Now, assuming ZGL
n−1 ≤ ∑n−1

j=1

(
Rj +3

∑n
i=1 Li

TSP(n−1)),

Li
TSP(n − 1) being the shortest tour through the locations

Li
1, . . . , Li

n−1, and noting that Li
TSP(n−1) ≤ Li

TSP(n) � Li
TSP,

we shall prove the result for n. Define Cmax
n−1 as the (projected)

maximum completion time of all requests in the instance of
(n−1) requests. We first find an upper bound on Cmax

n−1. Recall
that GL performed a re-optimization at time Rn−1. Consider
an alternate server that, at time Rn−1, first returned to the
origin before proceeding to visit all unserved requests; this
return takes at most

max
1≤i≤m

{
max

1≤j≤n−1
d
(
o, Lj

i

)} ≤ max
1≤i≤m

{
1

2
Li

TSP

}
≤ 1

2

m∑
i=1

Li
TSP

time. Once the alternate server reaches the origin, it first trav-
els through the locations {L1

1, . . . , L1
n−1}, then {L2

1, . . . , L2
n−1}

and so on until {Lm
1 , . . . , Lm

n−1}. This takes at most
∑m

i=1 Li
TSP

time. As Cmax
n−1 for GL is clearly at most the respective value

for this alternate strategy, we have that

Cmax
n−1 ≤ Rn−1 + 3

2

m∑
i=1

Li
TSP ≤ Rn + 3

2

m∑
i=1

Li
TSP.

Reoptimizing at time Rn will result in a latency value that
is no more than that of the following strategy: Wait until
requests 1, . . . , (n − 1) have all been served and then serve
request n. Letting C̄n denote the completion time of request n
in this virtual strategy and noting that at time Cmax

n−1 the server
is at a location Lm

j , j ∈ {1, . . . , n − 1}, we have that

ZGL
n ≤ ZGL

n−1 + wnC̄n

= ZGL
n−1 + wn

(
Cmax

n−1 + d
(
Lm

j , L1
n

) +
m∑

i=2

d
(
Li−1

n , Li
n

))

NETWORKS—2010—DOI 10.1002/net 7

≤ ZGL
n−1 + wn

(
Cmax

n−1 + d
(
Lm

j , o
) + d

(
o, L1

n

)

+
m∑

i=2

(
d
(
Li−1

n , o
) + d

(
o, Li

n

)))

≤ ZGL
n−1 + wn

(
Cmax

n−1 + 1

2
Lm

TSP +
m∑

i=1

2d
(
o, Li

n

))

≤ ZGL
n−1 + wn

(
Cmax

n−1 + 1

2
Lm

TSP +
m∑

i=1

Li
TSP

)

≤ ZGL
n−1 + wn

(
Cmax

n−1 + 3

2

m∑
i=1

Li
TSP

)

≤ ZGL
n−1 + wn

(
Rn + 3

m∑
i=1

Li
TSP

)
;

applying the inductive hypothesis proves the lemma. ■

The proof of Lemma 5 also directly applies to strategy
SIOR:

Corollary 2.

ZSIOR
n ≤

n∑
j=1

wj

(
Rj + 3

m∑
i=1

Li
TSP

)
.

3.2. Order Statistic Release Dates for the Case m = 1 and
wi = 1, ∀i

Our main result for this subsection is the following.

Theorem 2. Under Assumption 2, if m = 1, wi = 1,
∀i, E[Y3] < ∞ and L1, . . . , Ln are uniformly distributed in
[0, 1]2, then

lim
n→∞

ZGL
n

Z∗
n

= 1

almost surely.

Proof. We first find appropriate random variables Fn

and Gn. By Lemma 4 we let Fn = LTRP and Gn = 2nRn.
By Lemma 1, we have that LTRP = �(n3/2) almost surely.
As LTRP is almost surely positive, we may conclude that

1
LTRP

= O
(1

n3/2

)
almost surely. For any ε > 0, we have

that 1
LTRP

= o
(nε

n3/2

)
almost surely. Equivalently, we have that

limn→∞ nγ

LTRP
= 0 almost surely, for any γ < 3

2 . Next, we
decompose the limit:

Gn

Fn
= 2nY(n)

LTRP
= 2

n4/3

LTRP

Y(n)

n1/3
.

Taking limits, with γ = 4
3 and applying Lemma 2 (with r = 3

and δ = 1
3), proves the theorem. ■

Remark 1. We actually only require that there exists ε > 0
such that E[Y2+e] < ∞ to prove the above theorem.

Unfortunately, we were unable to prove a similar asymp-
totic optimality result for GLP. Corollary 1 and the proof
of Theorem 2 suggest choosing Fn = ρLTRP. But since
ρ > 1, it would have no longer been necessarily true
that Z∗

n ≥ Fn. However, the same approach does yield the
following corollary.

Corollary 3. Under Assumption 2, if m = 1, wi = 1,
∀i, E[Y3] < ∞ and L1, . . . , Ln are uniformly distributed in
[0, 1]2, then

lim
n→∞

ZGLP
n

Z∗
n

= ρ

almost surely.

3.3. Renewal Process Release Dates for Arbitrary m and wi

We first introduce a new stochastic assumption for the
release dates.

Assumption 7 (Renewal Process). Define non-negative
i.i.d. random variables Xi ≥ 0 to be the time between the
(i −1)th and ith release date. We then define the release dates
as follows: Rk = ∑k

i=1 Xi; note that Rk+1 = Rk +Xk+1 for all
k. Let µX and σ 2

X denote the mean and variance, respectively,
of the random variable X.

The main result of this subsection is the following.

Theorem 3. Under Assumptions 1, 7 and 3, if E[X2] < ∞,
then

lim
n→∞

ZGL
n

Z∗
n

= 1

almost surely.

Proof. We assume µX > 0 without loss of generality
since otherwise all release dates would be zero, almost surely,
and there would be nothing to prove.

We assign Fn = ∑n
j=1 wjRj and Gn = 3

(∑n
j=1 wj

)(∑m
i=1 Li

TSP

)
, in accordance with Lemma 5. Showing

limn→∞ Gn
Fn

= 0 almost surely proves the theorem. We first
bound (using Assumption 3) the argument of the limit:

Gn

Fn
=

3
(∑n

j=1 wj

) (∑m
i=1 Li

TSP

)
∑n

j=1 wjRj
≤ 3n�

∑m
i=1 Li

TSP

ω
∑n

j=1 Rj
.

We now express the sum of release dates in terms of the
X random variables:

n∑
i=1

Ri =
n∑

i=1

i∑
n=1

Xj =
n∑

j=1

n∑
i=j

Xj

=
n∑

j=1

(n − j + 1)Xj =
n∑

j=1

jXj,

8 NETWORKS—2010—DOI 10.1002/net

where the last equality follows (almost surely) from the fact
that the Xj random variables are i.i.d. Next, we take limits
and apply Lemma 3 and Theorem 1:

3n�
∑m

i=1 Li
TSP

ω
∑n

j=1 Rj
= 3n�

∑m
i=1 Li

TSP

ω
∑n

j=1 jXj

=
(

3�

ω

) (
n2∑

j=1 jXj

) (∑m
i=1 Li

TSP

n(d−1)/d

) (
1

n1/d

)

→
(

3�

ω

) (
2

µX

) (
m∑

i=1

ci
d

)
(0),

almost surely, and the convergence is proved. ■

As the upper bound on the cost of SIOR is identical to that
of GL (c.f. Lemma 5 and Corollary 2), we have the following
corollary for the polynomial-time SIOR.

Corollary 4. Under Assumptions 1, 7 and 3, if E[X2] < ∞,
then

lim
n→∞

ZSIOR
n

Z∗
n

= 1

almost surely.

4. SINGLE MACHINE MINSUM ONLINE
SCHEDULING

We consider online versions of the single machine
scheduling problems 1|rj, pmtn| ∑j wjCj and 1|rj| ∑j wjCj;
offline versions of both these problems are NP-hard.

4.1. Online 1|rj, pmtn| ∑j wjCj

Consider the preemptive Weighted Shortest Processing
Requirement (WSPR) heuristic, which is an online algo-
rithm: At any point in time, among the known unfinished
jobs, process the one with the highest ratio wi/pi. Note
that the WSPR heuristic (also known as Smith’s ratio rule
[33]) solves 1|| ∑j wjCj, and consequently 1|pmtn| ∑j wjCj,
exactly; e.g., see Pinedo [27]. We begin by stating the main
result for this subsection.

Theorem 4. Under Assumptions 4, 5 and 6, if E[Y] <

∞, then the WSPR heuristic is almost surely asymptotically
optimal for the online version of 1|rj, pmtn| ∑j wjCj.

Proof. We assume E[P] > 0 and E[W] > 0 without loss
of generality since otherwise both online and offline costs are
equal to zero and we have nothing to prove.

Let ZWSPR
n be the random variable denoting the cost of

WSPR on an instance of n jobs under the probabilistic condi-
tions of the theorem. Let Z∗

n be the random variable denoting
the optimal offline cost for 1|rj, pmtn| ∑j wjCj. Finally, let
ZR

n be the random variable for the optimal cost of the relaxed

problem 1|pmtn| ∑j wjCj, which is solved optimally by the
WSPR heuristic; clearly ZR

n ≤ Z∗
n .

At time Rn, the release date of the final job in the instance,
assume that no processing has been done; clearly, this will
only increase the online cost of WSPR. Therefore, under this
assumption, at time Rn, the WSPR heuristic essentially sees
the problem 1|pmtn| ∑j wjCj (i.e., all release dates are equal
to zero). Consequently, we have that

ZWSPR
n ≤ Rn

n∑
j=1

Wj + ZR
n . (1)

Considering the ratio of online to offline costs, we have
that

ZWSPR
n

Z∗
n

≤ Rn
∑n

j=1 Wj + ZR
n

ZR
n

= 1 + Rn
∑n

j=1 Wj

ZR
n

.

Let Bj be the event that Pj ≥ E[P] ∧ Wj ≥ E[W]. We
have that P[Bj] = α for some α. Let J denote the set of jobs
having property Bj. If we consider n jobs, |J| is a binomial
random variable with parameters n and α. By the Strong Law
of Large Numbers, |J|/n → α, almost surely and, therefore,
J = �(n), almost surely. Next, in order to compute a lower
bound on ZR

n , we consider the processing of only the jobs in
J . We re-order the indices on the W and P random variables
in J such that

W1

P1
≥ W2

P2
≥ · · · ≥ W|J|

P|J|
.

Applying the WSPR heuristic to the jobs in J , we observe the
following: The completion time of the first job processed,
job 1, is P1; the completion time of job 2 is P1 + P2; the
completion time of job k is P1 +· · ·+ Pk . Therefore, a lower
bound for serving the set J of jobs, which is also a lower
bound for ZR

n , is

|J|∑
j=1

E[W]
j∑

i=1

E[P] = E[W]E[P] |J|(|J| + 1)

1
.

Using the fact that |J| = �(n), almost surely, we have that
ZR

n = �(n2), almost surely. By the Strong Law of Large
Numbers,

∑n
j=1 Wj = �(n) almost surely and, by Lemma 2

with r = 1, Rn = o(n) almost surely. We are therefore able
to conclude that, as n → ∞,

Rn
∑n

j=1 Wj

ZR
n

→ 0,

almost surely and the proof is complete. ■

NETWORKS—2010—DOI 10.1002/net 9

4.2. Online 1|rj| ∑j wjCj

A nonpreemptive version Nonpreemptive Weighted Short-
est Processing Requirement (NWSPR) of WSPR is easily
defined: Whenever the machine is available to process a job,
if there remain unprocessed jobs, choose the job with the
highest ratio wi/pi. We are able to prove the exact same result
as Theorem 4:

Theorem 5. Under Assumptions 4, 5, and 6, if E[Y] < ∞,
then the NWSPR heuristic is almost surely asymptotically
optimal for the online version of 1|rj| ∑j wjCj.

The proof of Theorem 5 is very similar to that of Theorem
4; we detail only the differences.

Proof Outline 1. First, note that ZR
n is the optimal value

for both 1|pmtn| ∑j wjCj and 1|| ∑j wjCj, since these two
problems are essentially identical. Equation (1) is modified
to become

ZNWSPR
n ≤

(
Rn + max

1≤i≤n
Pi

) n∑
j=1

Wj + ZR
n .

The reason for this modification is because at time Rn, we can
not relate NWSPR’s actions to the problem 1|| ∑j wjCj, since
it might be busy processing some job. But after max1≤i≤n Pi

time, we are certain that the machine has finished what-
ever job had been in progress at time Rn. Therefore, at time
Rn + max1≤i≤n Pi, assuming that no job has been processed,
NWSPR “sees” the problem 1|| ∑j wjCj. After recalling that
max1≤i≤n Pi = o(n) almost surely (Lemma 2 with r = 1),
the rest of the proof remains identical.

5. PARALLEL MACHINE MINSUM ONLINE
SCHEDULING

We first consider online versions of the parallel machine
scheduling problems Q|rj, pmtn| ∑j Cj and P|rj| ∑j Cj;
offline versions of both these problems are NP-hard.
We show that well-known heuristics for these problems
are asymptotically optimal, almost surely. We then study
Q|rj, pmtn| ∑j wjCj and Q|rj| ∑j wjCj and show that, if we
allow for non-polynomial time algorithms, there exist online
algorithms that are asymptotically optimal, almost surely, for
these difficult scheduling problems.

5.1. Online Q|rj, pmtn| ∑j Cj

Consider the Shortest Remaining Processing Requirement
on Fastest Machine (SRPR-FM) heuristic, which is also an
online algorithm: At any given time, the job with the shortest
remaining processing requirement is assigned to the fastest
machine, the job with the second shortest remaining process-
ing requirement is assigned to the second fastest machine, and
so on. Note that the SRPR-FM heuristic solves Q|pmtn| ∑j Cj

exactly; e.g., see [27].

The reason that we only consider unit weights in this
section is that even P|pmtn| ∑j wjCj is NP-hard and our
technique for proving asymptotical optimality for a well-
known heuristic would break down. Our approach requires
that SRPR-FM exactly solves the machine scheduling prob-
lem when all release dates are zero. Further details are given
in the proof of Theorem 6.

Theorem 6. Under Assumptions 4, 5, and m fixed, if E[Y] <

∞, then the SRPR-FM heuristic is almost surely asymptoti-
cally optimal for the online version of Q|rj, pmtn| ∑j Cj.

Proof. We assume E[P] > 0 without loss of generality
since otherwise both online and offline costs are equal to zero
and we have nothing to prove.

Let ZSRPR−FM
n be the random variable denoting the cost

of SRPR-FM on an instance of n jobs under the probabilistic
conditions of the theorem. Let Z∗

n be the random vari-
able denoting the optimal offline cost for Q|rj, pmtn| ∑j Cj.
Finally, let ZR

n be the random variable for the optimal
cost of the relaxed problem Q|pmtn| ∑j Cj, which is solved
optimally by the SRPR-FM heuristic; clearly ZR

n ≤ Z∗
n .

At time Rn, the release date of the final job in the instance,
assume that no processing has been done; clearly, this will
only increase the online cost of SRPR-FM. Therefore, under
this assumption, at time Rn, the SRPR-FM heuristic essen-
tially sees the problem Q|pmtn| ∑j Cj. Consequently, we
have that

ZSRPR−FM
n ≤ nRn + ZR

n . (2)

The dependence of our proof on Equation (2) is the reason
why we are limited to studying unit weights. Had we consid-
ered arbitrary weights, online algorithm SRPR-FM would
encounter the NP-hard relaxation Q|pmtn| ∑j wjCj and we
would not be able to construct a viable version of Equation
(2).

Considering the ratio of online to offline costs, we have
that

ZSRPR−FM
n

Z∗
n

≤ nRn + ZR
n

ZR
n

= 1 + nRn

ZR
n

.

Next, we compute a lower bound on ZR
n . Clearly, the opti-

mal cost of P|pmtn| ∑j Cj, where all machines have speed
s1 (the fastest speed), is a lower bound. Furthermore, the
optimal cost of 1|pmtn| ∑j Cj, where the single machine has
speed ms1, is a lower bound for P|pmtn| ∑j Cj; the idea to
consider a fast single machine relaxation was first consid-
ered by Eastman et al. [14]. Note that the nonpreemptive
Shortest Processing Requirement1 (SPR) heuristic solves
1|pmtn| ∑j Cj exactly (to see this, simply set wi = 1, ∀i

1Whenever the machine is available to process a job, choose the job with the
shortest processing requirement.

10 NETWORKS—2010—DOI 10.1002/net

in the introductory discussion of Section 4.1). We apply a
similar argument to that in the proof of Theorem 4: Let Bj

be the event that Pj ≥ E[P]. We have that P[Bj] = α for
some α. Let J denote the set of jobs having property Bj. If
we consider n jobs, |J| is a binomial random variable with
parameters n and α. By the Strong Law of Large Numbers,
|J|/n → α, almost surely and, therefore, J = �(n), almost
surely. Next, in order to compute a lower bound on ZR

n , we
consider the processing of only the jobs in J . We re-order the
indices on the P random variables in J such that

P1 ≤ P2 ≤ · · · ≤ P|J|.

Applying the SPR heuristic to the jobs in J , we observe
the following: The completion time of the first job pro-
cessed, job 1, is P1/(ms1); the completion time of job 2 is
(P1 + P2)/(ms1); the completion time of job k is (P1 +· · ·+
Pk)/(ms1). Therefore, a lower bound for serving the set J of
jobs, which is also a lower bound for ZR

n , is

|J|∑
j=1

j∑
i=1

E[P]
ms1

= E[P]
ms1

|J|(|J| + 1)

2
.

Using the fact that |J| = �(n), almost surely, we have that
ZR

n = �(n2), almost surely. Recalling that Rn = o(n) almost
surely, as n → ∞,

nRn

ZR
n

→ 0,

almost surely and the proof is complete. ■

5.2. Online P|rj| ∑j Cj

Consider the nonpreemptive Shortest Processing Require-
ment (SPR) heuristic, which is also an online algorithm:
whenever a machine is available to process a job, choose the
job with the shortest processing requirement. Note that the
SPR heuristic solves P|| ∑j Cj exactly; e.g., see [27]. Again,
the reason that we only consider problems with unit weights
is that P|| ∑j wjCj is NP-hard. Our main result for this section
is the following.

Theorem 7. Under Assumptions 4, 5, and m fixed, if E[Y] <

∞ then the SPR heuristic is almost surely asymptotically
optimal for the online version of P|rj| ∑j Cj.

The proof of Theorem 7 is very similar to that of Theorem
6; we detail only the differences.

Proof Outline 2. Note that ZR
n is the optimal value for

P|| ∑j Cj. Equation (2) is modified to become

ZSPR
n ≤ n

(
Rn + max

1≤i≤n
Pi

)
+ ZR

n .

The reason for this modification is because at time Rn,
we can not relate SPR’s actions to the problem P|| ∑j Cj,

since some machines might be busy processing some jobs.
But after max1≤i≤n Pi time, we are certain that the machines
have finished whatever jobs had been in progress at time Rn.
Therefore, at time Rn + max1≤i≤n Pi, assuming that no job
has been processed, SPR “sees” the problem P|| ∑j Cj. The
rest of the proof remains identical.

5.3. Online Q|rj, pmtn| ∑j wjCj and Q|rj| ∑j wjCj

In this section, we point out that if we consider non-
polynomial time online algorithms, we obtain asymptotic
optimality results for more difficult machine schedul-
ing problems. To illustrate our point, we consider
Q|rj, pmtn| ∑j wjCj; similar reasoning applies to the nonpre-
emptive version.

Let Aoffline be an offline algorithm that exactly solves
Q|pmtn| ∑j wjCj, which is NP-hard. Let A be the online
algorithm that, whenever a new job is released, applies algo-
rithm Aoffline to all known unprocessed jobs. The proofs of
Theorems 4 and 6 can be combined to give the following
result.

Theorem 8. Under Assumptions 4, 5, 6, and m fixed,
if E[Y] < ∞, then online algorithm A is almost
surely asymptotically optimal for the online version of
Q|rj, pmtn| ∑j wjCj.

Similarly, we also have the following result.

Theorem 9. Under Assumptions 4, 5, 6, and m fixed,
if E[Y] < ∞, there exists an online algorithm Ā that is
almost surely asymptotically optimal for the online version
of Q|rj| ∑j wjCj.

Acknowledgments

The authors thank the anonymous referees for their
thoughtful comments, which improved the quality and clarity
of the article.

REFERENCES

[1] S. Albers and B. Schröder, An experimental study of online
scheduling algorithms, J Exp Algorithm 7 (2002), 3.

[2] L. Allulli, G. Ausiello, and L. Laura, On the power of looka-
head in on-line vehicle routing problems, In Proceedings
of the Eleventh International Computing and Combinatorics
Conference, Kunming, China, 2005, pp. 728–736.

[3] E. Anderson and C. Potts, On-line scheduling of a single
machine to minimize total weighted completion time, Math
Oper Res 29 (2004), 686–697.

[4] G. Bampis and E. Rouskas, On scheduling problems
with applications to packet-switched optical WDM net-
works, Technical Report TR-2000-07, 2000, Available at:
http://citeseer.ist.psu.edu/bampis01scheduling.html.

[5] J. Beardwood, J. Halton, and J. Hammersley, The short-
est path through many points, Proc Cambridge Phil Soc 55
(1959), 299–327.

NETWORKS—2010—DOI 10.1002/net 11

[6] A. Blum, P. Chalasani, D. Coppersmith, W. Pulleyblank, P.
Raghavan, and M. Sudan, The minimum latency problem, In
Proceedings of the 26th ACM Symposium on the Theory of
Computing, Montreal, Canada, 1994.

[7] A. Bompadre, M. Dror, and J. Orlin, Probabilistic analysis
of unit demand vehicle routing problems, J Appl Prob 44
(2007), 259–278.

[8] V. Bonifaci and L. Stougie, Online k-server routing prob-
lems, In Proceedings of the 4th Workshop on Approximation
and Online Algorithms, Lecture Notes in Computer Science,
2006.

[9] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar, Paths, trees
and minimizing latency, In Proceeding of the 44th Annual
IEEE Symposium on Foundations of Computer Science,
Cambridge, MA, 2003.

[10] C. Chekuri, R. Motwani, B. Natarajan, and C. Stein, Approx-
imation techniques for average completion time scheduling,
SIAM J Comput 31 (2001), 146–166.

[11] G. Chen and Z. Shen, Probabilistic asymptotic analysis on
stochastic online scheduling problems, IIE Trans 39 (2007),
525–538.

[12] C. Chou, M. Queyranne, and D. Simchi-Levi, The asymp-
totic performance ratio of an on-line algorithm for uniform
parallel machine scheduling with release dates, Math Prog
106 (2006), 137–157.

[13] J. Correa and M. Wagner, LP-based online scheduling: from
single to parallel machines, In Proceedings of the 11th Integer
Programming and Combinatorial Optimization Conference
(IPCO), Springer LNCS 3509, 2005, pp. 196–209.

[14] W. Eastman, S. Even, and I. Isaacs, Bounds for the optimal
scheduling of n jobs on m processors, Manage Sci 11 (1964),
268–279.

[15] E. Feuerstein and L. Stougie, On-line single-server dial-a-ride
problems, Theor Computer Sci 268 (2001), 91–105.

[16] J. Galambos, The asymptotic theory of extreme order statis-
tics, Robert E. Krieger Publishing Company, Melbourne, FL,
1987.

[17] M. Goemans, M. Queyranne, A. Schulz, M. Skutella, and Y.
Wang, Single machine scheduling with release dates, SIAM
J Discrete Math 15 (2002), 165–192.

[18] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G.R. Kan,
Optimization and approximation in deterministic sequencing
and scheduling: A survey, Annal Discrete Math 5 (1979),
287–326.

[19] B. Hiller, Probabilistic competitive analysis of a dial-a-ride
problem on trees under high load, Konrad-Zuse-Zentrum fur
Informationstechnik, Berlin, 2005.

[20] P. Jaillet and M. Wagner, Online routing problems: value
of advanced information as improved competitive ratios,
Transport Sci 40 (2006), 200–210.

[21] P. Jaillet and M. Wagner, Generalized online routing: New
competitive ratios, resource augmentation and asymptotic
analyses, Oper Res 56 (2008), 745–747.

[22] P. Kaminsky and D. Simchi-Levi, Asymptotic analysis of
an on-line algorithm for the single machine completion
time problem with release dates, Oper Res Lett 29 (2001),
141–148.

[23] A.H.G.R. Kan, Machine scheduling problems, Martinus
Nijhoff, The Hague, 1976.

[24] S. Krumke, W. de Paepe, D. Poensgen, and L. Stougie, News
from the online traveling repairman, Theor Comput Sci 295
(2003), 279–294.

[25] S. Krumke, W. de Paepe, D. Poensgen, and L. Stougie, Erra-
tum to “news from the online traveling repairman”, Theor
Computer Sci 352 (2006), 347–348.

[26] J.-C. Picard and M. Queyranne, The time-dependent traveling
salesman problem and its application to the tardiness problem
in one-machine scheduling, Oper Res 26 (1978).

[27] M. Pinedo, Scheduling: Theory, algorithms, and systems,
Second edition, Prentice Hall, New York, NY, 2002.

[28] M.W.P. Savelsbergh, R. Uma, and J. Wein, An experimental
study of lp-based approximation algorithms for scheduling
problems, INFORMS J Comput 17 (2005), 123–136.

[29] A. Schulz and M. Skutella, The power of α-points in pre-
emptive single machine scheduling, J Schedul 5 (2002),
121–133.

[30] A. Schulz and M. Skutella, Scheduling unrelated machines
by randomized rounding, SIAM J Discrete Math 15 (2002),
450–469.

[31] D. Simchi-Levi and O. Berman, Minimizing the total flow
time of n jobs on a network, IIE Trans 23 (1991).

[32] R. Sitters, Complexity and approximation in routing and
scheduling, PhD Thesis, Eindhoven University of Technol-
ogy, Eindhoven, Netherlands, 2004.

[33] W. Smith, Various optimizers for single-stage production,
Naval Res Log Quart 3 (1956), 59–66.

[34] J. Tsitsiklis, Special cases of traveling salesman and repair-
man problems with time windows, Networks 22 (1992).

[35] Y. Xia and D. Tse, Survey of single machine schedul-
ing with application to web object transmission, Technical
Report UCB/ERL M00/54, EECS Department, University
of California, Berkeley, 2000, Available at: http://www.eecs.
berkeley.edu/Pubs/TechRpts/2000/3908.html.

12 NETWORKS—2010—DOI 10.1002/net

